74 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: zonal flows, applied E x B flows, trapped electrons and finite beta

    No full text
    The aim of this paper is to report on recent advances made in global gyrokinetic simulations of ion temperature gradient (ITG) modes and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E × B zonal flows are studied with a global nonlinear δf formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means of verifying the quality of the numerical simulation. Due to an optimized loading technique, the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation evolves to a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profiles alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profiles. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear δf formulation. An ASDEX-Upgrade experiment with an internal transport barrier is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite β effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values

    Quasi-coherent modes and electron-driven turbulence

    No full text
    This letter reports on quasi-coherent (QC) modes observed in fluctuation spectra from Tore Supra and TEXTOR reflectometers. QC modes have characteristics in between coherent and broad-band fluctuations as they oscillate around a given frequency but have a wide spectrum. They are ballooned at the LFS midplane and appear usually on a frequency ranging from 30 to 120 kHz. In ohmic plasmas from both tokamaks, QC modes are detected only in linear ohmic confinement (LOC) regime and disappear in saturated ohmic confinement (SOC) regime. Linear simulations from Tore Supra predict that the LOC and SOC regimes are dominated by electron and ion modes respectively. Measurements of the perpendicular velocity of density fluctuations have been made from the top of TEXTOR by poloidal correlation reflectometry. They suggest that QC modes have a phase velocity ∼400 m s −1 higher in the electron diamagnetic direction than lower frequency fluctuations. Additionally, the onset of QC modes during electron cyclotron resonance heating has been observed in a Tore Supra region where turbulence is suspected to be driven by electron modes. These experimental results and instability calculations show a correlation between onsets of QC modes and predictions of trapped electron modes
    corecore