29 research outputs found

    A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa

    Get PDF
    Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures

    A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa

    Get PDF
    Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures

    A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa

    Get PDF
    Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa’s most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures

    Can exercise renography be an alternative to ACE inhibitor renography in hypertensive patients who are suspicious for renal artery stenosis?

    No full text
    The aim of this study was to evaluate the value of Tc-99m ethylenedicysteine exercise renography in patients with hypertension who were suspicious for renal artery stenosis and compare the results with captopril renography

    Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family

    No full text
    SCA48 is a novel spinocerebellar ataxia (SCA) originally and recently characterized by prominent cerebellar cognitive-affective syndrome (CCAS) and late-onset ataxia caused by mutations on the STUB1 gene. Here, we report the first SCA48 case from Turkey with novel clinical features and diffusion tensor imaging (DTI) findings, used for the first time to evaluate a SCA48 patient. A 65-year-old female patient with slowly progressive cerebellar ataxia, cognitive impairment, behavioral changes, and a vertical family history was evaluated. Following the exclusion of repeat expansion ataxias, whole exome sequencing (WES) was performed. Brain magnetic resonance imaging (MRI), including DTI, and single-photon emission computed tomography (SPECT) were used to study the primarily affected tracts and regions. WES revealed the previously reported heterozygous truncating mutation in ubiquitin ligase domain of STUB1 (ENST00000219548:c.823_824delCT, ENSP00000219548:p.L275Dfs*16) leading to a frameshift. Patient's cognitive status was compatible with CCAS. Novel clinical features different from the original report include later onset chorea, dystonia, general slowness of movements, apraxia, and palilalia, some of which have been recently reported in two families with different STUB1 mutations. CCAS is a prominent and often early feature of SCA48 which may be followed years after the onset of the disease by other complex neurological signs and symptoms. DTI may be helpful for demonstrating the cerebello-frontal tracts, involved in CCAS-associated SCA48, the differential diagnosis of which may be challenging especially in its early years
    corecore