110 research outputs found

    Development of a Displacement Sensor for the CERN-LHC Superconducting Cryodipoles

    Get PDF
    One of the main challenges of the Large Hadron Collider (LHC), the particle accelerator under construction at CERN (the European Organization for Nuclear Research) in Geneva, resides in the design and production of the superconducting dipoles used to steer the particles around a 27 km underground tunnel. These so-called cryodipoles are composed of an evacuated cryostat and a cold mass, that contains the particle tubes and the superconducting dipole magnet and is cooled by super uid Helium at 1.9 K. The particle beam must be centred within the dipole magnetic field with a sub-millimetre accuracy, this requires in turn that the relative displacements between the cryostat and the cold mass must be monitored with accuracy. Because of the extreme environmental conditions (the displacement measurements must be made in vacuum and between two points at a temperature difference of about 300 degrees) no adequate existing monitoring system was found for this application. It was therefore decided to develop an optical sensor suitable for this application. This contribution describes the development of this novel sensor and the first measurements performed on the LHC cryodipoles

    Formation of Zn–Ca phyllomanganate nanoparticles in grass roots

    Get PDF
    International audienceIt is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 Å in the ab plane and contain only 1.2 layers (not, vert, similar8.6 Å) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn–Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production

    Get PDF
    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filterfeeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp (Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested

    Evolution of CODYRUN from Thermal Simulation to Coupled Thermal and Daylight Simulation Software

    Get PDF
    AbstractCODYRUN is a multi-zone software integrating thermal building simulation, airflow, and pollutant transfer. Described in numerous publications, this software was originally used for the passive design of buildings, both for research and teaching purposes. In this context, the data treated were mainly concerned with volumes (zones), surfaces and thicknesses (walls and windows), materials, and systems, with the aim to determine temperatures, heat fluxes, energy consumed, air transfers, and so on.The question thus arose as to the integration of indoor lighting conditions into the simulation. Hence, previous data structures had to be amended to incorporate the spatial positioning of entities (walls, windows, and artificial lighting sources) through vertexes. A set of procedures was also developed for polygons as well as calculating natural and artificial lighting.The results of this new daylighting module were then compared with other results of simulation codes and experimental cases both in artificial and natural environments. Excellent agreements were obtained, such as the values for luminous efficiencies in a tropical and humid climate.A simulation exercise was conducted in a classroom located in Reunion Island (French overseas territory in the Indian Ocean), thus confirming the interest for thermal and daylighting designs in low-energy buildings

    Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    Get PDF
    The aim of this paper is to briefly recall heat transfer modes and explain their integration within a software dedicated to building simulation (CODYRUN). Detailed elements of the validation of this software are presented and two applications are finally discussed. One concerns the modeling of a flat plate air collector and the second focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows precise understanding of thermal and energetic behavior of the studied structures. Recent decades have seen a proliferation of tools for building thermal simulation. These applications cover a wide spectrum from very simplified steady state models to dynamic simulation ones, including computational fluid dynamics modules (Clarke, 2001). These tools are widely available in design offices and engineering firms. They are often used for the design of HVAC systems and still subject to detailed research, particularly with respect to the integration of new fields (specific insulation materials, lighting, pollutants transport, etc.). Available from: http://www.intechopen.com/books/evaporation-condensation-and-heat-transfer/heat-transfer-in-buildings-application-to-solar-air-collector-and-trombe-wall-designComment: Available from: http://www.intechopen.com/books/evaporation-condensation-and-heat-transfer/heat-transfer-in-buildings-application-to-solar-air-collector-and-trombe-wall-desig

    Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    Get PDF
    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states

    A Compact Dispersive Refocusing Rowland Circle X-ray Emission Spectrometer for Laboratory, Synchrotron, and XFEL Applications

    Full text link
    X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2 - 2.5 keV energy range. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, comparable to those of insertion-device beamlines at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel CMOS x-ray camera, is easily portable to synchrotron or x-ray free electron beamlines. Photometrics from measurements at the Advanced Light Source show somewhat higher overall instrumental efficiency than prior systems based on less tightly curved analyzer optics. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency, or its implementation in controlled gas gloveboxes either in the lab or in an endstation.Comment: Submitted, Review of Scientific Instrument

    Effect of Citalopram on Emotion Processing in Humans:A Combined 5-HT [C]CUMI-101 PET and Functional MRI Study

    Get PDF
    A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to play a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, cross-over design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [(11)C]CUMI-101.Citalopram infusion when compared to saline resulted in a significantly increased bilateral amygdala responses to fearful vs. neutral faces (Left p=0.025; Right p=0.038 FWE-corrected). DRN [(11)C]CUMI-101availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli, and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing

    Correlations between psychometric schizotypy, scan path length, fixations on the eyes and face recognition.

    Get PDF
    Psychometric schizotypy in the general population correlates negatively with face recognition accuracy, potentially due to deficits in inhibition, social withdrawal, or eye-movement abnormalities. We report an eye-tracking face recognition study in which participants were required to match one of two faces (target and distractor) to a cue face presented immediately before. All faces could be presented with or without paraphernalia (e.g., hats, glasses, facial hair). Results showed that paraphernalia distracted participants, and that the most distracting condition was when the cue and the distractor face had paraphernalia but the target face did not, while there was no correlation between distractibility and participants' scores on the Schizotypal Personality Questionnaire (SPQ). Schizotypy was negatively correlated with proportion of time fixating on the eyes and positively correlated with not fixating on a feature. It was negatively correlated with scan path length and this variable correlated with face recognition accuracy. These results are interpreted as schizotypal traits being associated with a restricted scan path leading to face recognition deficits
    • 

    corecore