142 research outputs found

    Variability in the Middle Stone Age of eastern Africa

    Get PDF

    Lithic miniaturization as adaptive strategy : a case study from Boomplaas Cave, South Africa

    Get PDF
    Abstract: Lithic miniaturization is a multivariate and evolutionarily significant technological phenomenon involving backed tools, bladelets, small retouched tools, flakes, and small cores. This paper investigates the proximate causes for variability in lithic miniaturization processes during Marine Isotope Stage 2 (c. 29–12 ka) in southern Africa. We test the hypothesis that lithic miniaturization represents a form of adaptive behavior by examining its relationship to site occupation intensity and rainfall seasonality at Boomplaas Cave in South Africa. These are two widely cited explanations for shifts in the organization of huntergatherer technologies and the data required for testing them are also readily available. We combine several lithic variables, macrofauna and microfauna indicators, and other archeological data to test the hypotheses. We find evidence that demographic processes impacted choices of technology within contexts of shifting rainfall seasonality, aridity, and rapidly rising Late Glacial sea-levels. In this context, Late Glacial humans converged on a small number of high payoff strategies including technological efficiency through bipolar bladelet production, greater production of ostrich eggshell ornaments and water containers, and a reorganized subsistence strategy targeting lower yield small mammals. The results demonstrate that lithic miniaturization was a strategic choice rather than an inevitable technological outcome. The outcomes have implications for understanding global instances of lithic miniaturization and their relationship to rapidly shifting paleoenvironments

    Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution

    Get PDF
    Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin-all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history

    Woodland modification in Bronze and Iron Age central Anatolia: an anthracological signature for the Hittite state?

    Get PDF
    The Bronze and Iron Ages of central Anatolia encompass a period of significant social and political change. In contrast to the well-documented changes in the social landscape, the environmental landscape for the region at this time is poorly understood. The limited temporal and spatial coverage from environmental records means it is difficult to understand the finer details of environmental change, especially in relation to the archaeology of specific sites. This paper offers a complete and continuous diachronic wood charcoal assemblage for the Middle Bronze Age to Late Iron Age from Kaman-Kalehöyük in central Anatolia. Results show a significant decline in taxa richness from the Middle Bronze Age to the Late Iron Age, particularly during the Hittite Empire period. The decline in richness is followed by a dramatic increase in pine use from the beginning of the Iron Age. The timing and exploitation of key taxa in the Kaman-Kalehöyük assemblage do not match that indicated in the regional pollen data but rather show a clear local signature chronologically matched to the Hittite Empire

    Fire and human management of late Holocene ecosystems in southern Africa

    Get PDF
    Globally, fire is a primary agent for modifying environments through the long-term coupling of human and natural systems. In southern Africa, control of fire by humans has been documented since the late Middle Pleistocene, though it is unclear when or if anthropogenic burning led to fundamental shifts in the region\u27s fire regimes. To identify potential periods of broad-scale anthropogenic burning, we analyze aggregated Holocene charcoal sequences across southern Africa, which we compare to paleoclimate records and archaeological data. We show climate-concordant variability in mid-Holocene fire across much of the subcontinent. However, increased regional fire activity during the late Holocene (~2000 BP) coincides with archaeological change, especially the introduction and intensification of food production across the region. This increase in fire is not readily explained by climate changes, but rather reflects a novel way of using fire as a tool to manage past landscapes, with outcomes conditioned by regional ecosystem characteristics

    Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction

    Get PDF
    Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end- Pleistocene megafaunal extinction in North America.We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on cooccurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations. Includes supplementary materials

    Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction

    Get PDF
    Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-occurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations.Peer reviewe

    Investigating Biotic Interactions in Deep Time

    Get PDF
    Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.Peer reviewe

    Late quaternary biotic homogenization of North American mammalian faunas

    Get PDF
    Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (similar to 30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (similar to 20,000-14,000 ybp). From similar to 10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at similar to 10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (similar to 2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back similar to 10,000 years.Peer reviewe

    Late quaternary biotic homogenization of North American mammalian faunas

    Get PDF
    Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (similar to 30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (similar to 20,000-14,000 ybp). From similar to 10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at similar to 10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (similar to 2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back similar to 10,000 years.Peer reviewe
    corecore