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Abstract 10 

The Bronze and Iron Ages of central Anatolia encompass a period of significant 11 

social and political change. In contrast to the well-documented changes in the social 12 

landscape, the environmental landscape for the region at this time is poorly 13 

understood. The limited temporal and spatial coverage from environmental records 14 

means it is difficult to understand the finer details of environmental change, 15 

especially in relation to the archaeology of specific sites. This paper offers a 16 

complete and continuous diachronic wood charcoal assemblage for the Middle 17 

Bronze Age to Late Iron Age from Kaman-Kalehöyük in central Anatolia. Results 18 

show a significant decline in taxa richness from the Middle Bronze Age to the Late 19 

Iron Age, particularly during the Hittite Empire period. The decline in richness is 20 

followed by a dramatic increase in pine use from the beginning of the Iron Age. The 21 

timing and exploitation of key taxa in Kaman-Kalehöyük assemblage do not match 22 

that indicated in the regional pollen data but rather show a clear local signature 23 

chronologically matched to the Hittite Empire. 24 

Keywords: Wood charcoal; Kaman-Kalehöyük; Turkey; woodland modification; 25 

Bronze Age; Iron Age; deforestation  26 
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1.0 Introduction 1 

The central Anatolian plateau was a key region of cultural development throughout 2 

prehistory, yet its detailed environmental history is relatively poorly understood 3 

compared to adjacent regions, especially during the Bronze Age (BA) (~3,000 – 4 

1,200 BC) and Iron Age (IA) (~1200 - 300 BC) (Dörfler, et al., 2011). Today, the 5 

barely forested central Anatolian landscape exhibits many characteristics of an 6 

anthropogenically modified landscape produced by millennia of agricultural and 7 

pastoral use (Asouti and Kabukcu, 2014, Marsh and Kealhofer, 2014). Much of the 8 

region is agricultural land dominated by crops and pastures, the latter supporting 9 

large livestock herds which have acted in concert with cultivation to produce a 10 

landscape of open treeless steppe with few observable pockets of woodland cover 11 

(Condé, et al., 2002).  12 

In contrast to the current landscape, regional pollen records indicate the 13 

establishment of open deciduous oak (Quercus spp.) woodland early in the 14 

Holocene across much of southwest Asia, including central Anatolia, until the mid-15 

Holocene (Roberts, et al., 2011b). Oak cover in central Anatolia reached its 16 

maximum ~ 3,000 – 5,000 BC, after which it declined drastically (Roberts, et al., 17 

2011b, Woldring and Cappers, 2001) matching the general pattern established in 18 

Syria, Iran and Georgia (Roberts, 2002).  19 

While palynological research has outlined the broad vegetation history of central 20 

Anatolia, the BA and IA remain poorly understood particularly in regards to the role 21 

of humans in modifying the landscape. Current knowledge relies largely on widely 22 

spaced pollen cores and climate data (Allcock, 2013, Roberts, et al., 2001, Wick, et 23 

al., 2003, Woldring and Bottema, 2002) supplemented by rare anthracological (wood 24 

charcoal analysis) studies (Asouti, 2013, Asouti and Kabukcu, 2014, Marston, 2009, 25 

Miller, 2010).  26 

As demonstrated in published cases from the broader region, anthracology is a 27 

powerful tool by which localised changes in ancient tree cover may be understood 28 

and disentangled (Asouti and Austin, 2005, Miller, 1985, Willcox, 2002). However, 29 

when analysing the BA and IA, anthracology’s potential has not been widely utilised 30 

in central Anatolia despite this period being one in which population, settlement, and 31 
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landscape were undergoing significant and interconnected phases of change 1 

(Allcock and Roberts, 2014, Rosen, 2007).  2 

This paper details the anthracological investigation of BA and IA settlement at 3 

Kaman-Kalehöyük, located in the heart of the central Anatolian highlands. A 4 

continuous occupation sequence from the Late Early Bronze Age (EBIII) until the 5 

Late Iron Age (LIA) (c. 300 BC) allows the exploration of woodland history during 6 

several significant cultural and environmental phenomena, including the local impact 7 

of purported major deforestation sequences described elsewhere (Djamali, et al., 8 

2008, Eastwood, et al., 1998, England, et al., 2008, Vermoere, et al., 2000). The 9 

period under study also includes a major 3.2-3.0 ka BP (c. 1,250 – c. 1,050 BC) 10 

drought event (Allcock, 2013, Mayewski, et al., 2004) which corresponded with the 11 

sudden collapse of the Hittite state in central Anatolia (Weiss, 1982). This major 12 

socio-political event, which saw a region superpower disappear from history for 13 

several millennia, was part of a sequence of political centralisation from the EBIII and 14 

was followed by a period of societal fragmentation - the so-called Anatolian "Dark 15 

Age" - after which centralised political authority re-emerged into the Classical Period 16 

(Bryce, 2005a). Given this context, the analysis aims to determine whether the 17 

patterns of woodland change at Kaman-Kalehöyük match that seen elsewhere in the 18 

eastern Mediterranean and evaluate the extent to which they were caused by the 19 

onset and impacts of anthropogenic woodland modification or patterns of climatic 20 

change.  21 

2.0 Materials and Methods 22 

2.1 The site and its cultural context 23 

Located in Kırşehir Province 110 km southeast of the Turkish capital, Ankara, 24 

Kaman-Kalehöyük (39° 21’ 46” N, 33° 47’ 12” E at 1, 070m ASL) is positioned near 25 

the centre of the central Anatolian highlands (Fig. 1) (Ishimaru and Kashima, 2000, 26 

Sayhan, 2000). The site is approximately 30km from the Kızılırmak River, and is 27 

situated in an area dominated by an agricultural economy and surrounded by 28 

abundant natural resources, including rich agricultural soils, mountains containing a 29 

variety of geological resources and several watercourses, including Aktan Dere.  30 

“INSERT FIG. 1 AND CAPTION HERE” 2 COLUMN FITTING C OLOUR ON WEB  31 
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Kaman-Kalehöyük is an 18m high artificial settlement mound approximately 280m in 1 

diameter. Excavated since 1986, the settlement is thought to have begun in the 2 

Neolithic or Chalcolithic, Kaman-Kalehöyük’s excavated deposits have been grouped 3 

into five strata, each separated into a number of sub-phases and occupation levels 4 

corresponding to the regional cultural sequence which are abbreviated according to 5 

Yakar (2011) and can be found in Table 1  (see Omura, 2011). These show a largely 6 

continuous occupation spanning from at least EBIII to the LIA and Hellenistic Period, 7 

with a hiatus prior to reoccupation in the Medieval and Post-Medieval Periods.  8 

“INSERT TABLE 1 AND CAPTION HERE” 2 COLUMN FITTING COLOUR ON 9 

WEB 10 

Kaman-Kalehöyük preserves a complex settlement sequence dominated throughout 11 

by domestic-scale architecture consisting of mudbrick buildings with stone 12 

foundation walls, cut through by numerous pits (Omura, 2011). Analysis has 13 

demonstrated that many pits were originally used for agricultural storage, being filled 14 

with rubbish once their primary use had ended (Fairbairn and Omura, 2005). 15 

Agriculture was a major focus for the site’s economy throughout its occupation, with 16 

abundant evidence for crop and animal production, alongside small-scale domestic 17 

industries such as cloth and pottery production, the latter using raw materials derived 18 

from local sources (Bong, et al., 2008, 2010, Kealhofer, et al., 2008). Material culture 19 

largely reflected domestic activities, with relatively few exotic and ostentatious finds, 20 

though gold items, seals, and a cuneiform tablet have been rarely recovered. 21 

Several occupation phases show evidence of some form of large-scale architecture, 22 

most clearly in the Hittite period when a central masonry building and associated 23 

grain silos indicate centralised control of grain supply (Fairbairn and Omura, 2005). 24 

Large buildings in the Middle Iron Age (MIA) and LIA, including a megaron-like 25 

structure, and large crop storages also suggest some form of political centralisation 26 

during that period (Omura, 2011). Importantly, occupation at Kaman-Kalehöyük 27 

appears to have continued during the Late Bronze Age (LBA) to Early Iron Age (EIA) 28 

transition, which marks a major rupture it Anatolian settlement patterns (Allcock and 29 

Roberts, 2014) when the Hittite state collapsed as part of a phase of regional scale 30 

socio-political change (Bryce, 2005b, Drews, 1993). 31 
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2.2 Environmental setting 1 

Situated in the temperate semi-arid steppe of the central Anatolian highlands, 2 

Kaman-Kalehöyük has a climate characterised by summer droughts and winter 3 

rains/snow with temperatures varying between -25°C and 40°C (Ertu ğ-Yaras, 1997, 4 

MGM, 2014, Roberts, 1995, Ünal, et al., 2003). At c. 380mm, the modern  average 5 

rainfall for the region (Fig. 1) is above the minimum required for reliable arable 6 

farming (MGM, 2014), which continues to be important in the local economy. For the 7 

study period, lake isotope records indicate a drying climate from ~4,500 BC after a 8 

wet early Holocene with two drought events from 2,200-2,000 BC and 1,200-1,000 9 

BC respectively (Mayewski, et al., 2004, Roberts, et al., 2011a, Weninger, et al., 10 

2009) . 11 

Central Anatolia is currently dominated by open agricultural habitats, steppe 12 

grassland, and while it supports steppe-forest elements of both Xero-Euxinian and 13 

Irano-Turanian types these only make up ~4% of the landscape (Condé, et al., 2002, 14 

Zohary, 1973). Although steppe-forest contains many taxa it is characterised by 15 

dominant associations of deciduous oak (Quercus spp.), juniper (Juniperus spp.), 16 

terebinth (Pistacia spp.), and hawthorn (Crataegus spp.), mixed with small herbs and 17 

shrubs, including spiny members of the legume family (Fabaceae/Leguminosae) 18 

(Zohary, 1973). On mountain slopes (above 1,100m), sparse forests of pine (Pinus 19 

spp.) can be observed, while willow/poplar (Salix/Populus), ash (Fraxinus sp.) and 20 

elm (Ulmus sp.) dominate riparian locations such as streams and lakes (Condé, et 21 

al., 2002, Davis, 1965-1985, Zohary, 1973).  22 

Turkey oak (Q. cerris) is commonly found in less disturbed woodlands, the closest to 23 

the site being 45km to the northeast in a protected and well drained valley, while 24 

pubescent oak (Q. pubescens) occurs in open oak woodland of which the closest is 25 

30km to the northeast (Akdeniz, et al., 2004, Akman, 1995, Kargıoğlu, et al., 2008). 26 

Pine and juniper occur in a modern planted forest near Bala some 60km to the 27 

northwest. Baran Dağ to the south of the site has some planted members of the 28 

Rosaceae family present on its higher slopes; however, this area remains subject to 29 

grazing and is consequently sparsely treed. Planted riparian taxa can be found along 30 

the course of Aktan Dere and other more substantial waterways within 5km of the 31 

site.  32 
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Pollen data show the gradual establishment (peaking ~5,000 BC to 3,000 BC) of 1 

open oak woodland in the high plateau of central Anatolia, matching the taxonomic 2 

composition of the small pockets of indigenous woodland visible today (Asouti and 3 

Kabukcu, 2014, Issar and Zohar, 2007, Riehl, 2009). Pine, cedar (Cedrus libani), 4 

terebinth, and juniper (Juniperus exelsa) also established themselves in their 5 

appropriate ecological zones (Cordova, 2007, Davis, et al., 1988, Djamali, et al., 6 

2009b). From 3,000 BC onwards,  pollen records generally show a decline in oak in 7 

Anatolia and the Near East (Connor, et al., 2004, Roberts, 2002). This decline not 8 

only matches increasing aridity in the region but also matches the shift to highly 9 

urbanised, politically centralised, and agriculture dependent societies in the 10 

Anatolian region (Allcock and Roberts, 2014, Arıkan, 2014, Riehl, et al., 2008, 11 

Roberts and Rosen, 2009). This pattern is evident in other parts of southwest Asia 12 

and Mediterranean regions where archaeobotanical investigations demonstrate 13 

dramatic human impacts to the landscape, resulting in a substantial loss of woodland 14 

cover (Klinge and Fall, 2010, Longford, et al., 2009, Miller, 1985, Miller, 1988, 15 

Willcox, 1974). 16 

2.3 Sampling  17 

Following standard anthracological methods, this analysis aimed to evaluate which 18 

tree species were utilised during each occupation phase at Kaman-Kalehöyük as a 19 

means of evaluating changes in available wood resources and thus tree cover. 20 

Samples were selected from a series of rubbish deposits recovered from re-used 21 

agricultural storage pits found commonly in the settlement sequence. Previous 22 

anthracological research has clearly indicated that pit assemblages contain a diverse 23 

range of wood charcoals derived from a variety of human actions and are suitable for 24 

evaluating general patterns of wood use through time (Asouti and Austin, 2005, 25 

Thery-Parisot, et al., 2010, Thiébault, 2002). In this case, pits were selected for 26 

analysis that were clearly defined and not subject to reworking, thus representing 27 

sealed depositional contexts. A total of 54 pit contexts from six occupation phases 28 

from the Middle Bronze Age (MBA) to LIA were analysed (Table 1). Samples from 29 

well-sealed pits from the EBIII and transitional strata at Kaman-Kalehöyük (IVa and 30 

IVb) were not available for analysis. Ten samples from the other major strata were 31 

included with the exception of Hittite Empire Period (Stratum IIIa), for which only 4 32 

were available.  33 
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All samples were subject to a standard archaeobotanical recovery technique, being 1 

recovered using an Ankara-type flotation tank fitted with a <0.25mm flotation mesh 2 

and a 1mm base mesh (Nesbitt, 1995). After Keepax (1988) a sub-sample of a 3 

minimum 100 fragments from the >2mm sample fraction of each sample was 4 

identified. To explore sample variability and adequacy of sample size, 11 samples 5 

that had 200 fragments were examined as well as six samples that had 1,000 6 

fragments (see rarefaction analysis below). Sub-sampling was undertaken using a 7 

riffle box/geological sample splitter (van der Veen and Fieller, 1982).  8 

2.4 Identification 9 

All fragments were manually broken to expose fresh transverse, tangential and radial 10 

sections. For taxonomic identification, fragments were observed under a reflected 11 

light microscope (Olympus BX60, SZX16, and ZX61) at magnifications up to 1,000x. 12 

A JOEL NeoScope JCM5000 desktop scanning electron microscope (SEM) was 13 

used for high quality image capture.  14 

Taxonomic identification was achieved using a reference collection of the dominant 15 

taxa of Turkey housed at The University of Queensland, Australia in conjunction with 16 

standard identification keys of European and South West Asian woodland taxa 17 

(Hather, 2000, Heiss, 2009, Schoch, et al., 2004, Schweingruber, 1990, 18 

Schweingruber, et al., 2006). The identified taxa were also grouped into appropriate 19 

analytical groups according to habitat preference based on the ecological literature 20 

(see Table 3 caption). 21 

2.5 Quantification and statistical analysis 22 

Identified taxa were quantified using ubiquity, absolute abundance and percentage 23 

abundance, all considered to be good proxies for the relative abundance of utilised 24 

taxa (Asouti and Austin, 2005, Smart and Hoffman, 1988). Weight data were not used to quantify the 25 

Kaman-Kalehöyük wood charcoal assemblage as a pilot study (Wright, 2010) 26 

showed that weight data tracked count data (Asouti and Austin, 2005, Deckers and 27 

Pessin, 2010, cf. Nelle, et al., 2010).  28 

Correspondence analysis (CA) was conducted on the charcoal abundance data to 29 

examine the association between plant taxa across stratigraphic units (Smith and 30 

Munro, 2009). CA was used to identify major changes in taxonomic composition in 31 
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the assemblages through time; these changes were then subject to additional 1 

statistical testing. Significant temporal trends in species abundance were identified 2 

using a chi-square test for linear trend (Lyman, 2008).  3 

Rarefaction analysis was used to compare taxonomic richness (total number of non-4 

overlapping taxa within each phase) across samples of different sizes (100, 200, and 5 

1,000 fragments) using the Paleontological Statistics (PAST) software package 6 

(Hammer, et al., 2001). Rarefaction analysis was conducted to ensure any patterns 7 

detected in the data were not a result of different sampling efforts (Bush, et al., 2004, 8 

Koellner, et al., 2004), that is different sample size, between archaeological contexts 9 

and periods. Temporal trends in taxonomic richness – with values rarefied down to 10 

comparable sample sizes – were assessed using Spearman’s rank order correlation 11 

coefficient. 12 

3.0 Results 13 

11,900 fragments were analysed, of which 95% were identified to one of 18 taxa 14 

(Table 2). All unidentifiable fragments contained insufficient diagnostic 15 

characteristics for identification or were poorly preserved. The number of 16 

unidentifiable fragments per sample remained consistent across analysed phases, 17 

with little variation observed. Following Asouti (2003), percentage abundance counts 18 

were calculated excluding the unidentifiable fragments. 19 

3.1 Identified taxa  20 

Of the 11,345 fragments identified, deciduous oak was the dominant taxon, and 21 

appeared in all contexts and occupation phases (Table 2). Despite not appearing in 22 

all contexts, pine is the next most abundant taxon in the wood charcoal assemblage 23 

followed by willow/poplar. Besides deciduous oak, only members of the Salicaceae 24 

(willow/poplar) family appear in all contexts (see Table 2). The remaining taxa do not 25 

make any significant contribution to the wood charcoal assemblage, with no single 26 

taxon exceeding more than 6% of the assemblage in any phase (Table 2). 27 

Six taxa (oak, pine, willow/poplar, Rose Family Indet. and Maloideae) appear in all 28 

phases, while three (holly, olive and fig) taxa only appear in Iron Age samples (Table 29 

2). In contrast, only plum and reed only occur in BA phases. Several specimens 30 

belonging to the Rosaceae family could be identified (e.g., sub-family Maloideae and 31 
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the genus Prunus), whereas the majority could only be identified to family level who’s 1 

potential candidates in this category include Amygdalus, although it is rare in close 2 

vicinity to the site today. The LBA contains the least number of taxa (n=7) while the 3 

MBA I-III and LIA phases contain the most taxa (n=16). Using the site totals from 4 

Table 2, we observe that ubiquity is very tightly correlated with absolute fragment 5 

counts (log-transformed) (r = 0.92, p <0.001). It follows that – as in the case of 6 

fragment weights – ubiquity generally tracks count data. We therefore focus our 7 

analyses on the count data. 8 

“INSERT TABLE 2 AND CAPTION HERE” TWO COLUM FITTING  9 

3.2 Plant communities 10 

Five distinct analytical groups were represented in the wood charcoal assemblage 11 

based on habitat preferences and structure (Table 3). Two taxa, oak and pine, are 12 

kept separate from other taxa as they dominate, with a tendency to be mono-specific 13 

in their respective vegetation communities in the region (Kaya and Raynal, 2001, 14 

Woldring and Cappers, 2001). The bulk of other species are found in the fringes or 15 

woodland transition zones (Davis, et al., 1988, Djamali, et al., 2009b).   16 

The riparian vegetation community contains hydrophilic taxa, including, 17 

willow/poplar, elm, reed, tamarisk and ash. All remaining taxa, including the Rose 18 

Family Indet., can represent open vegetation elements commonly occurring on the 19 

periphery of woodland zones and in the woodland understory (Asouti, 2003, Asouti 20 

and Kabukcu, 2014, Riehl and Marinova, 2008). These taxa are referred to as minor 21 

taxa with the exception of olive, fig and holly, which are grouped separately as exotic 22 

(Table 3). Juniper and maple are included in the minor taxa group and appear as 23 

isolated large trees. Both can be occasionally found in open oak woodland, pine 24 

forests, or mixed forest, although rarely together (Asouti, 2003, Condé, et al., 2002, 25 

Kaya and Raynal, 2001). Fig and olive are native to the Mediterranean region and 26 

probably indicate trade species. Although both are capable of growing in central 27 

Anatolia, neither is a part of the native flora of central Anatolia with the cold winters 28 

precluding them from being indigenous taxa in the region. Both genera prefer the 29 

warmer coastal conditions of the Mediterranean region and extreme winters are 30 

known to harm mature trees (Davis, 1965-1985, Davis, et al., 1988). Holly is 31 

considered a Euxine element and most probably originated from the Black Sea 32 
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region where it is found today (Davis, 1965-1985, Davis, et al., 1988) and, with fig 1 

and olive, probably represent traded items. 2 

“INSERT TABLE 3 AND CAPTION HERE”  3 

3.3 Assemblage analysis 4 

Correspondence analysis of taxonomic abundance was used to explore the temporal 5 

variability in the taxonomic composition of the wood charcoal assemblage. Fig. 2 6 

plots CA axes 1 and 2, which account for 55.3% and 14.6% of the variance in 7 

taxonomic abundance, respectively. Contexts within phases group together and are 8 

therefore more similar to each other than to contexts in other phases. Aside from the 9 

LIA samples, which are characterised by greater variability than other phases, the 10 

phases are aligned in near-perfect temporal order along axis 1, which documents the 11 

transition from taxa-rich contexts in the MBA I-III to taxa-poor assemblages with 12 

abundant pine in the IA. There is a clear separation of BA and IA samples on axis 1, 13 

with all BA samples having a positive loading while all IA samples have negative 14 

loading (Fig. 2). CA axis 2 is positively loaded by taxa that do not occur in all 15 

contexts such as olive, fig, and ash, among others, while being negatively loaded by 16 

oak and willow/poplar which do occur in all contexts (see ubiquity in Table 2).  17 

“INSERT FIG. 2 AND CAPTION HERE” 2 COLUMN FITTING C OLOUR ON WEB  18 

The diachronic ordering of samples in the CA was further analysed in Fig. 3 using 19 

the analytical taxonomic groupings detailed in Table 3, with the differences in the 20 

abundance of the three dominant taxa (oak, pine and willow/poplar) being readily 21 

apparent. Oak is clearly dominant across all occupation phases while pine shows a 22 

marked increase from the oldest to the youngest phase and willow/poplar the 23 

opposite, matching their position on CA axis 1. The remaining taxa show a similar 24 

pattern of diachronic decline, with the exception of the Rose family which displays a 25 

similar pattern to oak. The most obvious shift in abundance occurs in pine, which is 26 

very rare in the BA (Kaman-Kalehöyük stratum IIIc to IIIa) but becomes the second 27 

most dominant taxon in the IA (Kaman-Kalehöyük stratum IId-IIa), almost equalling 28 

the abundance of oak.  29 

Oak is the dominant taxon across all phases peaking at 78.71% in the Hittite Empire 30 

period (IIIa). A chi-square test for linear trend, conducted on a 2 by 6 contingency 31 
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table (oak versus non-oak across all six phases), shows that the increase in oak 1 

from the MBA I-III to the LBA and its subsequent decline to the LIA are significant 2 

(χ2
trend = 117.455, p < 0.001 and χ2

trend = 151.132, p < 0.001 respectively). Pine 3 

peaks in the MIA and all other vegetation groups decline steadily from BA to IA. This 4 

shift towards pine parallels that observed in the correspondence analysis (Fig. 2). A 5 

chi-square test for linear trend (2 x 6 contingency table) shows that the increase in 6 

pine relative to all other taxa is highly significant (χ2
trend = 1,892.979, p < 0.001). 7 

Highly significant results are also observed for the decline in riparian taxa (χ2
trend = 8 

455.421, p < 0.001) and minor taxa (χ2
trend = 313.253, p < 0.001). 9 

“INSERT FIG. 3 AND CAPTION HERE” 2 COLUMN FITTING C OLOUR ON WEB 10 

3.4 Taxonomic richness 11 

Samples from the MBA I-III and LIA show the highest taxonomic richness, with 15 12 

out of 18 taxa present, while LBA samples only have seven out of 18 taxa (see Table 13 

2). Despite there being a similar number of taxa in both the MBA I-III and the LIA, the 14 

two phases have a dissimilar range of taxa (see Table 2 and Fig. 4). EIA and IA 15 

samples show decreased taxonomic richness, but not to the extent of the Hittite 16 

Empire. The MBA IV (Old Hittite Kingdom) period contains 15 of the 18 identified 17 

taxa; however, its samples generally show reduced taxonomic ubiquity compared to 18 

the MBA I-III (Table 2). 19 

Table 2 and Fig. 1 indicate a decline in taxa richness in the samples from the LBA 20 

but do not take into account different sampling effort between contexts. To determine 21 

whether the decline in taxa richness is a real trend and not a product of sample size 22 

bias, samples of greater than 100 fragments were rarefied to 92 specimens and the 23 

taxa richness was compared (Fig. 4). Rarefaction analysis was conducted on 17 24 

samples and is illustrated in Fig. 4 (see also Supplementary Table 1 and 25 

Supplementary Fig. 1). The rarefied samples show that the pattern of decline in 26 

taxonomic richness in the LBA, which appears to be sustained well into the Iron Age, 27 

was not a product of differing sample size. Spearman’s rank-order correlation 28 

coefficient indicates that this decline is significant (rs = -0.714, p = 0.058). The 29 

rarefaction analysis also shows that among those samples from more taxa-rich 30 

contexts (>5 taxa), 100 fragments may be insufficient to obtain a complete 31 
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representation of utilised taxa (see also Supplementary Table 1 and Supplementary 1 

Fig. 1).  2 

“INSERT SUPPLEMENTARY TABLE 1 AND INLINE SUPPLEMENT ARY FIG. 1 3 

HERE” 4 

“INSERT FIG. 4 AND CAPTION HERE” SINGLE COLUMN FITT ING COLOUR ON 5 

WEB 6 

4.0 Discussion 7 

The spread of deciduous oak woodlands and mixed forests into the Anatolian 8 

plateau is well reported in much of the literature to the mid-Holocene (Asouti and 9 

Kabukcu, 2014, Roberts, 2002), however, the nature of woodland utilisation for the 10 

BA and IA has been generally overlooked (cf. Longford, et al., 2009, Marston, 2009, 11 

Miller, 2010). Despite this paucity of research, a regional picture of changing patterns 12 

in woodland cover can be found in palaeoenvironmental proxies from the region (see 13 

Figs. 5 and 6 as summary diagrams) which allow a reconstruction of the history of 14 

vegetation exploitation at Kaman-Kalehöyük to be placed in its regional setting.  15 

Wood charcoal analysis of BA and IA contexts at Kaman-Kalehöyük demonstrates 16 

increasing exploitation of broadleaf woodland with a corresponding decrease in taxa 17 

richness (Figs. 2, 3, and 4) during the MBA IV and LBA. The decrease in taxa 18 

richness is immediately followed by a highly significant increase in exploitation of 19 

pine during the EIA which is sustained until the end of the First Millennium BC.  20 

The level of taxonomic richness (Fig. 4), especially the presence of minor woodland 21 

taxa in conjunction with the dominance of oak in the  MBA (Fig.3), indicate the 22 

landscape likely consisted of a well-established open oak woodland (Woldring and 23 

Bottema, 2002, Zohary, 1973) matching that indicated by Asouti and Kabukcu 24 

(2014:170,175) in areas of characterised by less anthropogenic disturbance. In the 25 

LBA (Hittite Empire) there is a significant decline in the number of taxa exploited, 26 

possibly indicating that the well-established woodland of earlier periods was under 27 

significant anthropogenic pressure. The simultaneous increase in oak use in the 28 

same period also matches observations by Asouti and Kabukcu (2014:175) of scrub 29 

oak overtaking areas that have been intensively utilised for firewood and the like. 30 

This reduction in taxonomic richness, which begins in the MBA IV (Old Hittite 31 

100 
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Kingdom), could be the result of an expansion of agricultural or grazing land at the 1 

expense of riparian woodland, possibly in conjunction with clearance of minor 2 

woodland taxa via grazing and wood fuel collection (Djamali, et al., 2009a, Flynn, et 3 

al., 2009, Marston, 2012, Miller, 1997). Contemporaneous evidence from storage 4 

structures at Kaman-Kalehöyük indicates that the Hittite period saw increased 5 

political and economic control over grain redistribution (Fairbairn and Omura 2005). 6 

Interpreted in this light, the anthracological data for Hittite land clearance suggest 7 

that Kaman-Kalehöyük’s farmers were also modifying their production systems, 8 

perhaps also responding to state demands, whether directly through political 9 

instruction or indirectly through demand from large conurbations (Atıcı, 2005).  10 

Today, two species of anatomically indistinguishable deciduous oak (Q. cerris and Q. 11 

pubescens) are found in similar landscapes to that of Kaman-Kalehöyük, with the 12 

nearest stands some 30km to the northwest (Akdeniz, et al., 2004, Akman, 1995, 13 

Kargıoğlu, et al., 2008). However, the dominance of deciduous oak (evergreen oak 14 

was not present) in the Kaman-Kalehöyük assemblage suggests that significant 15 

stands of oak woodland persisted close to the site throughout the study period. The 16 

pollen data for the broader region (Fig. 5) is inconsistent but that of Eski Acıgöl, 17 

some 110 km to the south, indicates a persistent but low level of oak cover but 18 

certainly not the dominance that the Kaman-Kalehöyük wood charcoal data suggest. 19 

Beyşehir Gölü (250 km southwest) shows a barely perceptible oak presence in the 20 

BA and a slight, but low level, increase in oak in the IA, opposite of the pattern 21 

shown in the Kaman-Kalehöyük data. The conclusion is, neither of these patterns 22 

are a good match for the Kaman-Kalehöyük data (to the extent that the Kaman-23 

Kalehöyük data are reflective of the local woodland composition). The far more 24 

distant Lake Van data (800km east) is a better match for the oak data from Kaman-25 

Kalehöyük indicating significant differences in local chronologies of woodland 26 

change.  27 

“INSERT FIG. 5 AND CAPTION HERE” 2 COLUMN FITTING C OLOUR ON WEB  28 

The pine found in the Kaman-Kalehöyük assemblage was probably derived from 29 

black pine (P. nigra) or Scots pine (P. sylvestris), which are indistinguishable on the 30 

basis of their wood anatomy. Both pine species are still relatively common in the 31 

region, although the nearest observed stands are all planted and are some 50-60 km 32 
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to the northwest near Bala. The wood charcoal data show pine increasing in the IA 1 

while barely registering a presence in the BA. It is clear from Fig. 6 that the Kaman-2 

Kalehöyük pine exploitation data show no strong agreement with the reported data 3 

from contemporaneous pollen cores from central Anatolia. Instead, the pollen data 4 

indicate that, at least in Eski Acıgöl and Beyşehir Gölü records (Fig. 6), pine was 5 

more dominant than oak in the region for the entire study period, although the pollen 6 

data may be skewed by the prodigious ability for pine to produce vast quantities of 7 

pollen that travel considerable distances (Richardson, 2000).  Neither Eski Acıgöl nor 8 

Beyşehir Gölü show a contemporaneous sudden increase in presence to match the 9 

increased exploitation at the start of the EIA in the Kaman-Kalehöyük data. Again, 10 

only the Van data show any similarity in the low levels of pine present in the BA 11 

period although the Van data shows no similarity for the IA. 12 

“INSERT FIG. 6 AND CAPTION HERE” 2 COLUMN FITTING C OLOUR ON WEB  13 

The onset of the Iron Age is accompanied by a dramatic increase in pine use (Figs. 14 

2, 3 and 6) and we consider four potential mechanisms that could account for this: 15 

1. Pine colonised areas previously occupied by oak; 16 

2. Pine was imported from further afield to supplement the wood resource 17 

repertoire; 18 

3. Climate change encouraged the spread of pine in the region, increasing its 19 

presence in the landscape;  20 

4. Previously avoided or underutilised sources of pine were now exploited.  21 

Pine can be a successful coloniser of disturbed land, even highly alkaline soils 22 

exposed after fire or clearance (see Pinus sylvestris as an example) (Keeley and 23 

Zedler 2000:234). However, this is an unlikely scenario as oak also responds well to 24 

land clearance, often re-sprouting after felling while pine is generally slow in 25 

colonising alkaline soils like those in the region (Asouti and Kabukcu, 2014, 26 

Eastwood, et al., 1998). The continued dominance of oak suggests that the 27 

woodland  around the site had not resulted in the complete opening of the landscape 28 

required for taxa such as pine to flourish and is contra the pollen data shown in Figs. 29 

5 and 6 (Keeley and Zedler, 2000).   30 
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It is possible that pine was transported to the site from farther afield than in previous 1 

periods. If this is the case, we would expect its incorporation into the assemblage to 2 

result from construction with the waste being used for fuel supplementation, because 3 

it is unlikely that pine – an inferior fuel source compared to oak (Marston, 2009) – 4 

would be sourced from long distances purely for fuel and there is no evidence for an 5 

increase in dung fuel use, which is usually associated with fuel scarcity (Miller, 1984, 6 

Miller, 1985). However, the archaeology of the site to date does not support a 7 

significant increase in buildings in the EIA utilising pine. Newton and Kuniholm 8 

(2001) consistently found that oak was the main construction material in the EIA, 9 

although more detailed analysis of construction materials needs to be undertaken for 10 

a conclusive argument to be made.  11 

From the third millennium BC, the increase in pine chronologically matches the fall of 12 

the Hittite empire as well as the 3.2-3.0 ka BP (c. 1,250 – c. 1,050 BC) climatic event 13 

that brought widespread drought throughout the region (Kuzucuoğlu, et al., 2011, 14 

Roberts, et al., 2001, Rosen, 2007). The climatic event is characterised by humidity 15 

values lower than the periods pre and post the LBA (Allcock, 2013, Allcock and 16 

Roberts, 2014, Kuzucuoğlu, 2010, Rosen, 1997). Climate change has often been 17 

suggested as causal of changes in arboreal cover, but ecological data on the 18 

preferred range and habitat of oak indicates that even with a drying climate, the 19 

central Anatolian steppe would still support open oak woodland (Jones and Roberts, 20 

2008, Roberts, et al., 2001, Sagona and Zimansky, 2009). Additionally, the 21 

persistence of pine in the Kaman-Kalehöyük assemblage into the LIA is counter 22 

intuitive to a surge in pine driven by drought. Despite the climate change event 23 

observed in the climate data from across Anatolia, the results from Kaman-24 

Kalehöyük support Roberts et al.’s (2001) argument that climate alone is insufficient 25 

in causing the shift from oak to pine at Kaman-Kalehöyük and, as such, climate 26 

change can be seen as a contributory factor rather than the primary cause of the 27 

change.  28 

Interestingly, as the climate improved into the IA there was not a concomitant 29 

increase in riparian taxa (which are sometimes pioneers), indicating that continued 30 

human impact played a major role in landscape transformation at the site. There is a 31 

drop in the abundance of riparian taxa in the Early Iron Age, suggesting that riparian 32 
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woodland in the local area had declined. Nevertheless, the presence of willow/poplar 1 

in all phases indicates the continued existence of a riverine or riparian forest along 2 

banks and gullies of the local water sources (Fairbairn, et al., 2002, Longford, et al., 3 

2009, Riehl and Marinova, 2008, Russell, et al., 2007). Considering the close 4 

proximity of waterways to the site and the ability of riparian taxa to colonise rapidly, 5 

the decline in riparian taxa supports the notion that constant human pressure on 6 

riverine areas surrounding the site limited the ability for these species to maintain 7 

woodland cover in the face of human harvesting pressure.  8 

The pollen data from both Eski Acıgöl and Beyşehir Gölü indicate pine forests were 9 

in existence close to the site in the BA but were underexploited or avoided compared 10 

to oak and riparian woodlands either due to their location prohibiting their common 11 

use or a specific avoidance of pine. In particular, if pine did exist on the slopes of 12 

Baran Dağ just to the south of the site, then its lack of exploitation could be 13 

explained by the significance and sacred nature attributed to mountains by the 14 

Hittites, as proposed by Haas (1982) and supported by Popko (1994). If indeed 15 

mountains were sacred and places of importance to the Hittite (contra Ullmann, 16 

2010), then the underutilisation of the woodland resources on them is a reasonable 17 

premise (Gorny, 1989, Gorny, 2006a, Gorny, 2006b). The demise of the Hittite 18 

Empire at the end of the Bronze Age and cessation of Hittite cultural practices could 19 

explain why pine sees a sudden and significant increase in use in the Early Iron Age.  20 

The continued dominance of oak throughout the Iron Age does not support the 21 

conclusion that there was complete replacement of oak woodland in the area close 22 

to Kaman-Kalehöyük during the Iron Age. Rather, the decline in minor taxa 23 

combined with the continued exploitation of oak indicates a possible shift from well-24 

established minimally disturbed oak woodland described by Zohary (1973) and Davis 25 

(1965-1985) to the more low-diversity highly disturbed oak-dominated woodlands 26 

described by Asouti and Kabukcu (2014). This indicates that the highly modified 27 

anthropogenic open oak woodland described and observed by Asouti and Kabukcu 28 

(2014) may well have been established at Kaman-Kalehöyük during the Hittite 29 

Empire period (LBA). At the same time, across much of southwest Asia and Europe 30 

there is sufficient evidence to suggest that deforestation often accompanies 31 

urbanisation, increased agricultural activities, and possibly state formation (Badal, et 32 
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al., 1994, Baruch, 1990, Böse and Brande, 2010, Fall, et al., 2002). However, the 1 

pattern from Kaman-Kalehöyük does not support the level of deforestation indicated 2 

elsewhere in the southwest Asian region during the BA and IA, for example northern 3 

Syria and southern Turkey (Deckers and Riehl, 2007), instead demonstrating that 4 

woodland continued to exist and was used as the major fuel. Rather, the Kaman- 5 

Kalehöyük data clearly indicate an anthracological signature that is most clearly 6 

linked to the emergence and expansion of the Hittite state characterised by 7 

woodland modification, perhaps in concert with expanding agricultural practices, 8 

rather than complete deforestation. 9 

5.0 Conclusion 10 

This paper detailed the anthracological investigation of Kaman-Kalehöyük in the 11 

central Anatolian highlands during the BA and IA in order to evaluate the extent and 12 

nature of Kaman-Kalehöyük’s woodland in this period. In particular, the paper aimed 13 

to establish the presence and change in dominant tree taxa during the occupation 14 

sequence.  15 

Results indicate that deciduous oak woodland was present throughout the entire 16 

sequence, though several significant changes in woodland composition did occur. 17 

The first and most obvious of these changes was a significant and dramatic increase 18 

in the use of pine from the onset of the IA coinciding with the decline of the Hittite 19 

Empire at the end of the BA. The second change was the clear and significant 20 

reduction in taxa richness from the MBA I-III to the LBA, indicating a local 21 

anthracological signature for the Hittite state. This reduction in taxa richness was 22 

followed by a more subtle increase from the EIA through to the LIA.  23 

The interpretation that these changes indicate that the activities of the inhabitants of 24 

the site, especially during the Hittite occupation, had substantial impact on the 25 

surrounding environment is reasonable. The Hittite signature for the LBA is one of 26 

intensive harvesting of the extant open woodland to the point where taxa richness 27 

was significantly affected while also avoiding pine which the pollen data clearly show 28 

was present in the region. Despite the notable impact on taxa richness, deciduous 29 

oak never disappears from the record indicating that despite the intensity of Hittite 30 

harvesting, collection of oak did not result in complete removal of deciduous oak 31 
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from the available resource repertoire. Thus, the nuance contained in the Kaman-1 

Kalehöyük assemblage does not directly match the regional pollen data but rather 2 

show Kaman-Kalehöyük is characterised by a local exploitation pattern reflecting 3 

specific cultural and economic practices.  4 
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Fig. 1. A – Kaman-Kalehöyük in relation to sites mentioned in text (redrawn from 
Google Earth, 2014 Map Data © 2014 AND Image Landsat). B – Topography of the 
area surrounding the site and key features mentioned in text (redrawn from Sayhan, 
2000). C – Annual rainfall for the Kırşehir region from 1971 to 2013, dashed line 
indicates the 42 year mean rainfall (MGM, 2014).   

Fig. 2. Correspondence analysis plot of all samples where Axis 1 accounts for 55.3% 
of the variance within the samples and axis 2 describes 14.6% of the variance. 

Fig. 3. Percentage abundance for all taxa across all samples where samples are 
ordered by phase with the oldest at the bottom and the dashed line indicates the 
division between the BA and IA. Taxa are ordered by vegetation zone/structure as 
per Table 3. 

Fig. 4. The number of taxa at 92 fragments compared to the observed amount of 
taxa for those samples where 1000 were analysed.  

Fig. 5. Oak (Quercus) wood charcoal data from Kaman-Kalehöyük compared to 
pollen records from Eski Acıgöl, Lake Van, and Beyşehir Gölü (original data 
published by Litt, et al., 2009, Roberts, et al., 2001, Wick, et al., 2003, Woldring and 
Bottema, 2002) The chronology for Eski Acigol is based on Roberts, et al. (2001), 
Lake Van chronology is the revised chronology based on Litt, et al. (2009) while the 
Kaman-Kalehöyük phases follow Table 2. 

Fig. 6. Pine (Pinus) wood charcoal data from Kaman-Kalehöyük compared to the 
pollen records from Eski Acıgöl, Lake Van, and Beyşehir Gölü (sources and 
chronology as detailed in Fig. 5). 
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Table 1: Approximate dates for the occupation phases and sample information for 

Kaman-Kalehöyük (*Hongo, 2003, Matsumura and Omori, 2008, Omori and 

Nakamura, 2006, Omori and Nakamura, 2007, Omura, 2011, Yakar, 2011). 

Period No. of samples analysed 
(fragments identified) 

Site 
Stratum 

Anatolian cultural 
phase (abbreviation 

used in text) 

Approximate  
dates * 

Medieval/ 
Post-

Medieval 

NA Ia Ottoman 
c. 1,450 – 
1,650 AD 

NA Ib Byzantine 
c. 1,000 – 
1,150 AD 

Iron Age  

10 (1835) IIa 
Late Iron Age to 
Hellenistic (LIA) 

c. 650 – 300 
BC 

10 (1841) IIc Middle Iron Age (MIA) c. 800 – 650 
BC 

10 (2102) IId 
Early Iron Age  

(EIA) 
 c. 1,200 –  
c. 800 BC  

Late Bronze 
Age 4 (1390) IIIa  

Hittite Empire Period  
(LBA) 

c. 1,500 – 
1,200 BC  

Middle 
Bronze Age 

10 (2104) IIIb  
Old Hittite Kingdom 

Period (MBA IV) 
c. 1,650 – 
1,500 BC  

10 (2073) IIIc  
Assyrian Colony Period 

(MBA I-III) 
c. 2,000 – 
1,650 BC   

Early Bronze 
Age 

NA IVa  Transitional Early 
Bronze Age (EBA) c.2,000 BC 

NA IVb  
Early Bronze Age III  

(EBIII) to c.2,000 BC 
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Table 2: Percentage abundance (%f), absolute count (Af) and ubiquity (U) for pit contexts across the analysed strata (Kaman-
Kalehöyük phases in parentheses). Shaded squares indicate presence. 

 

Taxon 

Phase 

Totals Late Iron Age 
(IIa) 

Middle Iron Age 
(IIc) 

Early Iron Age 
(IId) 

Late Bronze 
Age (IIIa) 

Middle Bronze 
Age IV (IIIb) 

Middle Bronze 
Age I-III (IIIc) 

English Name Latin %f U Af %f U Af %f U Af %f U Af %f U Af %f U Af %f U Af 

Oak Quercus 46.2 10 848 51.8 10 953 63.3 10 1,331 78.7 4 1,094 63.1 10 1,327 57.7 10 1,197 59.5 54 6,750 

Pine Pinus 37.7 10 692 40.0 10 737 25.0 10 526 4.2 4 58 1.8 10 38 0.5 3 11 18.2 47 2,062 

R
ip

ar
ia

n
 

Willow/Poplar Salix/Populus 4.7 10 87 3.0 10 56 6.8 10 142 12.2 4 169 21.5 10 453 14.1 10 292 10.6 54 1,199 

Elm Ulmus 1.1 5 20 1.1 4 21 0.6 8 13 0.9 2 12 2.2 8 47 1.7 10 35 1.3 37 148 

Tamarisk Tamarix 
      0.2 3 5    0.1 2 2 0.8 9 16 0.2 14 23 

Reed Phragmites 
            

0.7 6 14 1.4 9 29 0.4 15 43 

Ash Fraxinus 0.3 3 6 0.1 1 1 0.0 1 1    0.3 6 6 1.5 10 31 0.4 21 45 

M
in

o
r 

Rose Family indet. Rosaceae 3.7 10 67 2.3 10 42 2.2 9 47 1.9 3 26 2.7 10 57 4.8 10 99 3.0 52 338 

Apple sub-family Maloideae 1.1 8 20 0.9 7 17 0.2 4 4 1.7 3 24 2.6 10 55 5.3 10 110 2.0 35 230 

Plum Prunus 
               

1.5 9 31 0.3 9 31 

Dogwood Cornus 0.5 2 10 0.1 1 2 0.1 1 2    1.1 10 23 1.3 10 27 0.6 23 64 

Hackberry Celtis 0.7 2 13    0.5 4 11    0.9 10 19 5.1 9 106 1.3 25 149 

Buckthorn Rhamnus 0.2 2 3          1.0 7 22 1.6 10 33 0.5 19 58 

Juniper Juniperus 0.8 3 15 0.4 4 8 0.4 2 9 0.5 2 7 0.8 9.0 17 1.5 10 31 0.8 30 87 

Maple Acer 1.0 7 19    0.3 5 7    1.1 8 24 1.2 8 25 0.7 28 75 

E
xo

ti
c Holly Ilex 0.5 2 9    0.2 1 4          0.1 3 13 

Fig Ficus 1.3 2 24 0.1 1 2             0.2 3 26 

Olive Olea 0.1 1 2 0.1 1 2 
            

0.0 2 4 

 
Totals 100 10 1,835 100 10 1,841 100 10 2,102 100 4 1,390 100 10 2,104 100 10 2,073 100 54 11,345 

# of Taxa 15 11 13 7 14 15 18 
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Table 3: Shows the analytical groups of the identified taxa based on their habitat 

preference and/or structural quality which are used in text. Table adapted from 

(Asouti, 2003, Asouti and Austin, 2005, Asouti and Hather, 2001, Barnes, et al., 

1998, Condé, et al., 2002, Davis, 1965-1985, Davis, et al., 1988, Deckers and 

Pessin, 2010, Riehl and Marinova, 2008, Roberts, et al., 2001, Russell, et al., 2007). 

Analytical 
Groups Key Taxa Habitats 

Open Oak  
Woodland 

Deciduous 
Oak Quercus Well drained, upland slopes and foothills. Plateaus 

and mountain slopes 800m to  2,000m 

Pine Forest Pine Pinus Well drained upland slopes. Mountain slopes 
1,100m to  2,700m 

Riparian 

Willow/Poplar Salix/Populus 

River banks, wet valleys and gullies, and lake sides 

Elm Ulmus 
Tamarisk Tamarix 

Reed Phragmites 
Ash Fraxinus 

Minor Taxa 
(shrubs, 
fringe) 

Rose Family 
Indet. Rosaceae 

Steppe and flat areas, rocky foothills, outcrops and 
dry plains. Open well drained, gullies. Mountain 

slopes, high plateaus 

Apple sub-
family Maloideae 

Plum Prunus 
Dogwood Cornus 
Hackberry Celtis 
Buckthorn Rhamnus 

Juniper Juniperus 
Maple Acer 

Exotic 

Holly Ilex Euxine element, humid woodland 

Fig Ficus Rocky outcrops and fast flowing streams. Humid 
rocky areas 

Olive Olea Limestone slopes and crags. Warmer coastal 
conditions 
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Woodland modification in Bronze and Iron Age central Anatolia: An 

anthracological signature for the Hittite state?  

Nathan J. Wrighta, Andrew S. Fairbairna and J. Tyler Faitha and Kimiyoshi 

Matsumurab 

 

HIGHLIGHTS 

• We analyse 54 wood charcoal contexts from Kaman-Kalehöyük Turkey. 
• Taxa richness declines during the Late Bronze Age and into the Iron Age 
• A shift to pine occurs at the beginning of the Iron Age 
• Oak is dominant throughout the sequence 
• An anthracological signature for the Hittite occupation is detected 
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Supplementary Table 1: Rarefied data for those samples where more than 200 fragments were analysed. Rarefaction was used 
for comparing richness in samples of different sizes (Bush et al. 2004). This table shows the estimates of how many taxa are 
expected to be found in a sample with a smaller total number of individuals. Typically rarefication of the larger samples down to a 
sample size equivalent to the smallest occurs, which in this case is 92 fragments. 

Number of fragments 
Kaman Stratum 

IIa IIc IId IId IId IId IIIa IIIa IIIa IIIb IIIb IIIb IIIb IIIc IIIc IIIc IIIc 

50 6.8 4.5 4.5 4.3 4.2 3.9 4.4 2.9 4.9 7.1 6.6 6.3 6.3 9.7 11.2 9.9 10.6 

75 8.1 5.0 5.0 4.6 4.7 4.5 4.8 3.0 5.5 8.4 7.7 7.5 7.5 11.5 13.3 11.5 12.6 

92 9.0 5.3 5.5 4.8 5.0 4.9 4.9 3.0 5.9 9.4 8.5 8.4 8.4 12.7 14.6 12.5 13.8 

150 10.2 5.7 6.2 5.0 5.6 5.6 5.0 3.0 6.4 10.5 9.6 9.6 9.6 14.2 15.0 13.5 14.9 

187 10.9 5.9 6.6 5.0 6.0 6.0 5.0 3.0 6.7 11.0 10.0 10.0 10.2 14.6 15.0 14.0 15.0 

250 11.3 5.9 7.0      6.8 

 

10.6 15.0 

 

500 11.9 6.0 7.7      7.0 11.0 15.0 

750 12.0 6.0 8.0      7.0 11.0 15.0 

950 12.0 6.0 8.0      7.0 11.0 15.0 

Difference (max-92) 3.2 0.7 2.5 0.2 1 2.1 0.1 0 1.1 1.4 1.5 1.6 2.6 2.3 0.4 1.5 1.2 
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Supplementary Fig. 1: Rarefaction curves for the six samples, one from each phase, with 1000 fragments analysed. The red 
dashed lines offer an example of the differences in taxa observed at different sampling efforts. In this case, 15 taxa could be 
expected to be observed at 900 fragments sampled while approximately 12 would be expected at 100 fragments sampled. 

100 


