25 research outputs found

    Evidence for Suzuki–Miyaura cross-couplings catalyzed by ligated Pd3-clusters: from cradle to grave

    Get PDF
    Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki–Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki–Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(μ-Br)(μ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the ‘Pd3X2’ motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with ‘Pdx(PPh3)y’ type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries

    Direct Cyclopalladation of Fluorinated Benzyl Amines by Pd3(OAc)6 : The Coexistence of Multinuclear PdnReaction Pathways Highlights the Importance of Pd Speciation in C-H Bond Activation

    Get PDF
    Palladacycles are key intermediates in catalytic C-H bond functionalization reactions and important precatalysts for cross-couplings. It is commonly believed that palladacycle formation occurs through the reaction of a substrate bearing a C-H bond ortho to a suitable metal-directing group for interaction with, typically, mononuclear "Pd(OAc)2"species, with cyclopalladation liberating acetic acid as the side product. In this study, we show that N,N-dimethyl-fluoro-benzyl amines, which can be cyclopalladated either ortho or para to fluorine affording two regioisomeric products, can occur by a direct reaction of Pd3(OAc)6, proceeding via higher-order cyclopalladated intermediates. Regioselectivity is altered subtly depending on the ratio of substrate:Pd3(OAc)6 and the solvent used. Our findings are important when considering mechanisms of Pd-mediated reactions involving the intermediacy of palladacycles, of particular relevance in catalytic C-H bond functionalization chemistry

    Access to Some C5-Cyclised 2-Pyrones and 2-Pyridones via Direct Arylation; Retention of Chloride as a Synthetic Handle

    Get PDF
    The synthetic effort towards the functionalisation of C–H bonds on 2-pyrones and 2-pyridones has been enabled by the preferential reactivity of the C-3 position. Herein, we report a direct arylation protocol for the intramolecular coupling of 2-pyrones and 2-pyridones, allowing access to a previously unavailable class of C-5 cyclised products with an unstudied biological profile. A C–Cl bond was retained at C-3 during the direct arylation process allowing further derivatisation at C-3, using a Suzuki–Miyaura cross-coupling reaction

    Direct Evidence for Competitive C-H Activation by a Well-Defined Silver XPhos Complex in Palladium-Catalyzed C-H Functionalization

    Get PDF
    Increasing evidence indicates that silver salts can play a role in the C-H activation step of palladium-catalyzed C-H functionalization. Here we isolate a silver(I) complex by C-H bond activation and demonstrate its catalytic competence for C-H functionalization. We demonstrate how silver carbonate, a common but highly insoluble additive, reacts with pentafluorobenzene in the presence of a bulky phosphine, XPhos, to form the C-H bond activation product Ag(C6F5)(XPhos). By isolating and fully characterizing this complex and the related carbonate and iodide complexes, [Ag(XPhos)]2(μ-κ2,κ2-CO3) and [AgI(XPhos)]2, we show how well-defined Ag(I) complexes can operate in conjunction with palladium complexes to achieve C-H functionalization even at ambient temperature. Reactions are tested against the standard cross-coupling of C6F5H with 4-iodotoluene, catalyzed by palladium acetate at 60 °C in the presence of silver carbonate and Xphos. Key observations are that (a) PdI(C6H5)(XPhos) reacts stoichiometrically with Ag(C6F5)(XPhos) to form Ph-C6F5 instantly at room temperature; (b) catalytic cross coupling can be achieved using 5% Ag(C6F5)(XPhos) as the sole silver source; and (c) palladium acetate (typical precatalyst) can be replaced for catalytic cross coupling by the expected oxidative addition compound PdI(C6H5)(XPhos). These investigations lead to a catalytic cycle in which Ag(I) plays the C-H bond activation role and palladium plays the coupling role. Moreover, we show how the phosphine can be exchanged between silver complexes, ensuring that it is recycled even though silver carbonate is consumed during catalytic cross-coupling

    Broad Spectrum Enantioselective Amide Bond Synthetase from Streptoalloteichus hindustanus

    Get PDF
    The synthesis of amide bonds is one of the most frequently performed reactions in pharmaceutical synthesis, but the requirement for stoichiometric quantities of coupling agents and activated substrates in established methods has prompted interest in biocatalytic alternatives. Amide Bond Synthetases (ABSs) actively catalyze both the ATP-dependent adenylation of carboxylic acid substrates and their subsequent amidation using an amine nucleophile, both within the active site of the enzyme, enabling the use of only a small excess of the amine partner. We have assessed the ability of an ABS from Streptoalloteichus hindustanus (ShABS) to couple a range of carboxylic acid substrates and amines to form amine products. ShABS displayed superior activity to a previously studied ABS, McbA, and a remarkable complementary substrate specificity that included the enantioselective formation of a library of amides from racemic acid and amine coupling partners. The X-ray crystallographic structure of ShABS has permitted mutational mapping of the carboxylic acid and amine binding sites, revealing key roles for L207 and F246 in determining the enantioselectivity of the enzyme with respect to chiral acid and amine substrates. ShABS was applied to the synthesis of pharmaceutical amides, including ilepcimide, lazabemide, trimethobenzamide, and cinepazide, the last with 99% conversion and 95% isolated yield. These findings provide a blueprint for enabling a contemporary pharmaceutical synthesis of one of the most significant classes of small molecule drugs using biocatalysis

    Reactivity of a Dinuclear PdIComplex [Pd2(μ-PPh2)(μ2-OAc)(PPh3)2] with PPh3 : Implications for Cross-Coupling Catalysis Using the Ubiquitous Pd(OAc)2/nPPh3Catalyst System

    Get PDF
    [PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] is the reduction product of PdII(OAc)2(PPh3)2, generated by reaction of ‘Pd(OAc)2’ with two equivalents of PPh3. Here, we report that the reaction of [PdI2(μ-PPh2)(μ2-OAc)(PPh3)2] with PPh3results in a nuanced disproportionation reaction, forming [Pd0(PPh3)3] and a phosphinito-bridged PdI-dinuclear complex, namely [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2]. The latter complex is proposed to form by abstraction of an oxygen atom from an acetate ligand at Pd. A mechanism for the formal reduction of a putative PdIIdisproportionation species to the observed PdIcomplex is postulated. Upon reaction of the mixture of [Pd0(PPh)3] and [PdI2(μ-PPh2){κ2-P,O-μ-P(O)Ph2}(κ-PPh3)2] with 2-bromopyridine, the former Pd0complex undergoes a fast oxidative addition reaction, while the latter dinuclear PdIcomplex converts slowly to a tripalladium cluster, of the type [Pd3(μ-X)(μ-PPh2)2(PPh3)3]X, with an overall 4/3 oxidation stateperPd. Our findings reveal complexity associated with the precatalyst activation step for the ubiquitous ‘Pd(OAc)2’/nPPh3catalyst system, with implications for cross-coupling catalysis

    Mechanically Robust Hybrid Gel Beads Loaded with “Naked” Palladium Nanoparticles as Efficient, Reusable, and Sustainable Catalysts for the Suzuki–Miyaura Reaction

    Get PDF
    The increase in demand for Pd and its low abundance pose a significant threat to its future availability, rendering research into more sustainable Pd-based technologies essential. Herein, we report Pd scavenging mechanically robust hybrid gel beads composed of agarose, a polymer gelator (PG), and an active low-molecular-weight gelator (LMWG) based on 1,3:2,4-dibenzylidenesorbitol (DBS), DBS-CONHNH2. The robustness of the PG and the ability of the LMWG to reduce Pd(II) in situ to generate naked Pd(0) nanoparticles (PdNPs) combine within these gel beads to give them potential as practical catalysts for Suzuki–Miyaura cross-coupling reactions. The optimized gel beads demonstrate good reusability, green metrics, and most importantly the ability to sustain stirring, improving reaction times and energy consumption compared to previous examples. In contrast to previous reports, the leaching of palladium from these next-generation beads is almost completely eliminated. Additionally, for the first time, a detailed investigation of these Pd-loaded gel beads explains precisely how the nanoparticles are formed in situ without a stabilizing ligand. Further, detailed catalytic investigations demonstrate that catalysis occurs within the gel beads. Hence, these beads can essentially be considered as robust “nonligated” heterogeneous PdNP catalysts. Given the challenges in developing ligand-free, naked Pd nanoparticles as stable catalysts, these gel beads may have future potential for the development of easily used systems to perform chemical reactions in “kit” form

    Understanding Precatalyst Activation and Speciation in Manganese-Catalyzed C-H Bond Functionalization Reactions

    Get PDF
    An investigation into species formed following precatalyst activation in Mn-catalyzed C-H bond functionalization reactions is reported. Time-resolved infrared spectroscopy demonstrates that light-induced CO dissociation from precatalysts [Mn(C^N)(CO)4] (C^N = cyclometalated 2-phenylpyridine (1a), cyclometalated 1,1-bis(4-methoxyphenyl)methanimine (1b)) in a toluene solution of 2-phenylpyridine (2a) or 1,1-bis(4-methoxyphenyl)methanimine (2b) results in the initial formation of solvent complexes fac-[Mn(C^N)(CO)3(toluene)]. Subsequent solvent substitution on a nanosecond time scale then yields fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)], respectively. When the experiments are performed in the presence of phenylacetylene, the initial formation of fac-[Mn(C^N)(CO)3(toluene)] is followed by a competitive substitution reaction to give fac-[Mn(C^N)(CO)3(2)] and fac-[Mn(C^N)(CO)3(η2-PhC2H)]. The fate of the reaction mixture depends on the nature of the nitrogen-containing substrate used. In the case of 2-phenylpyridine, migratory insertion of the alkyne into the Mn-C bond occurs, and fac-[Mn(C^N)(CO)3(κ1-(N)-2a)] remains unchanged. In contrast, when 2b is used, substitution of the η2-bound phenylacetylene by 2b occurs on a microsecond time scale, and fac-[Mn(C^N)(CO)3(κ1-(N)-2b)] is the sole product from the reaction. Calculations with density functional theory indicate that this difference in behavior may be correlated with the different affinities of 2a and 2b for the manganese. This study therefore demonstrates that speciation immediately following precatalyst activation is a kinetically controlled event. The most dominant species in the reaction mixture (the solvent) initially binds to the metal. The subsequent substitution of the metal-bound solvent is also kinetically controlled (on a ns time scale) prior to the thermodynamic distribution of products being obtained

    A comprehensive understanding of carbon-carbon bond formation by alkyne migratory insertion into manganacycles

    Get PDF
    Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps

    Opening a Pandora’s Flask on a Prototype Catalytic Direct Arylation Reaction of Pentafluorobenzene : The Ag2CO3/Pd(OAc)2/PPh3 System

    Get PDF
    Direct C-H functionalization reactions have opened new avenues in catalysis, removing the need for prefunctionalization of at least one of the substrates. Although C-H functionalization catalyzed by palladium complexes in the presence of a base is generally considered to proceed by the CMD/AMLA-6 mechanism, recent research has shown that silver(I) salts, frequently used as bases, can function as C-H bond activators instead of (or in addition to) palladium(II). In this study, we examine the coupling of pentafluorobenzene 1 to 4-iodotoluene 2a (and its analogues) to form 4-(pentafluorophenyl)toluene 3a catalyzed by palladium(II) acetate with the commonplace PPh3 ligand, silver carbonate as base, and DMF as solvent. By studying the reaction of 1 with Ag2CO3/PPh3 and with isolated silver (triphenylphosphine) carbonate complexes, we show the formation of C-H activation products containing the Ag(C6F5)(PPh3)n unit. However, analysis is complicated by the lability of the Ag-PPh3 bond and the presence of multiple species in the solution. The speciation of palladium(II) is investigated by high-resolution-MAS NMR (chosen for its suitability for suspensions) with a substoichiometric catalyst, demonstrating the formation of an equilibrium mixture of Pd(Ar)(κ1-OAc)(PPh3)2 and [Pd(Ar)(μ-OAc)(PPh3)]2 as resting states (Ar = Ph, 4-tolyl). These two complexes react stoichiometrically with 1 to form coupling products. The catalytic reaction kinetics is investigated by in situ IR spectroscopy revealing a two-term rate law and dependence on [Pdtot/nPPh3]0.5 consistent with the dissociation of an off-cycle palladium dimer. The first term is independent of [1], whereas the second term is first order in [1]. The observed rates are very similar with Pd(PPh3)4, Pd(Ph)(κ1-OAc)(PPh3)2, and [Pd(Ph)(μ-OAc)(PPh3)]2 catalysts. The kinetic isotope effect varied significantly according to conditions. The multiple speciation of both AgI and PdII acts as a warning against specifying the catalytic cycles in detail. Moreover, the rapid dynamic interconversion of AgI species creates a level of complexity that has not been appreciated previously
    corecore