298 research outputs found

    Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering

    Get PDF
    We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime

    Optomechanical parametric oscillation of a quantum light-fluid lattice

    Get PDF
    Two-photon coherent states are one of the main building pillars of nonlinear and quantum optics. They are the basis for the generation of minimum-uncertainty quantum states and entangled photon pairs, applications not obtainable from standard coherent states or one-photon lasers. Here, we describe a fully resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes. The quadratic coupling derives from nonresonant virtual transitions to extended discrete excited states induced by the optomechanical coupling. Nonresonant continuous-wave laser excitation leads to striking experimental consequences, including the emergence of optomechanically induced intersite parametric oscillations and intersite tunneling of polaritons at discrete intertrap detunings corresponding to sums of energies of the two involved mechanical oscillations (20- and 60-GHz confined vibrations). We show that the coherent mechanical oscillations correspond to parametric resonances with a threshold condition different from that of standard linear optomechanical self-oscillation. The associated Arnold tongues display a complex scenario of states within the instability region. The observed phenomena can have applications for the generation of entangled phonon pairs and squeezed mechanical states relevant in sensing and quantum computation and for the bidirectional frequency conversion of signals in a technologically relevant range.Fil: Reynoso, Andres Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Usaj, Gonzalo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Chafatinos, Dimitri Lisandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Mangussi, Franco. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Kuznetsov, A. S.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Biermann, K.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Santos, P. V.. Paul-drude-institut Für Festkörperelektronik; AlemaniaFil: Fainstein, Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentin

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Antiferromagnetic Order of the Ru and Gd in Superconducting RuSr2GdCu2O8

    Full text link
    Neutron diffraction has been used to study the magnetic order in RuSr{2}GdCu2O8. The Ru moments order antiferromagnetically at T{N}=136(2)K, coincident with the previously reported onset of ferromagnetism. Neighboring spins are antiparallel in all three directions, with a low T moment of 1.18(6) mu {B} along the c-axis. Our measurements put an upper limit of ~0.1 mu{B} to any net zero-field moment, with fields exceeding ~0.4T needed to induce a measurable magnetization. The Gd ions order independently at T{N}=2.50(2)K with the same spin configuration. PACS numbers: 74.72.Jt, 75.25.+z, 74.25.Ha, 75.30.KzComment: Four pages, Latex, 5 eps figure

    Spin Glass Behavior in RuSr2Gd1.5Ce0.5Cu2O10

    Full text link
    The dynamics of the magnetic properties of polycrystalline RuSr2Gd1.5Ce0.5Cu2O10 (Ru-1222) have been studied by ac susceptibility and dc magnetization measurements, including relaxation and ageing studies. Ru-1222 is a reported magneto-superconductor with Ru spins magnetic ordering at temperatures near 100 K and superconductivity in Cu-O2 planes below Tc ~ 40 K. The exact nature of Ru spins magnetic ordering is still debated and no conclusion has been reached yet. In this work, a frequency-dependent cusp was observed in ac susceptibility vs. T measurements, which is interpreted as a spin glass transition. The change in the cusp position with frequency follows the Vogel-Fulcher law, which is commonly accepted to describe a spin glass with magnetically interacting clusters. Such interpretation is supported by themoremanaent magnetization (TRM) measurements at T = 60 K. TRM relaxations are well described by a stretched exponential relation, and present significant ageing effects.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Decoupled CuO_2 and RuO_2 layers in superconducting and magnetically ordered RuSr_2GdCu_2O_8

    Get PDF
    Comprehensive measurements of dc and ac susceptibility, dc resistance, magnetoresistance, Hall resistivity, and microwave absorption and dispersion in fields up to 8 T have been carried out on RuSr_2GdCu_2O_8 with the aim to establish the properties of RuO_2 and CuO_2 planes. At ~130 K, where the magnetic order develops in the RuO_2 planes, one observes a change in the slope of dc resistance, change in the sign of magnetoresistance, and the appearance of an extraordinary Hall effect. These features indicate that the RuO_2 planes are conducting. A detailed analysis of the ac susceptibility and microwave data on both, ceramic and powder samples show that the penetration depth remains frequency dependent and larger than the London penetration depth even at low temperatures. We conclude that the conductivity in the RuO_2 planes remains normal even when superconducting order is developed in the CuO_2 planes below \~45 K. Thus, experimental evidence is provided in support of theoretical models which base the coexistence of superconductivity and magnetic order on decoupled CuO_2 and RuO_2 planes.Comment: 11 pages, 11 figures, submitted to PR

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    Bacterial adherence to mucosal epithelium in the upper airways has less significance than believed

    Get PDF
    BACKGROUND: Bacterial adherence to the upper airway epithelium is considered to be an important phenomenon in the pathogenesis of infections. However, the evidence for the hypothesis that bacterial adherence to mucosal epithelial cells has significance for pathogenesis of mucosal infections is based on studies using indirect techniques. We could find no biopsy studies with direct ocular observations of significant numbers of bacteria adhering to upper airway mucosal epithelial cells either in health or during disease. RESULTS: We studied specimens from healthy and infected tonsillar epithelium and specimens from the soft palate epithelium obtained by surgery. The specimens were examined by TEM. In the vast majority of specimens, we found no bacteria adhering to the epithelial cells in the mucosal line regardless of whether the patient was infected or not. Bacteria adhering to shed epithelial cells were seen in higher numbers. Furthermore, as bacteria are small compared to epithelial cells, we calculated the risk of overlooking every adhered bacteria in a section if bacterial adherence was such a significant phenomenon as earlier suggested. We found this risk to be very small. CONCLUSION: We conclude that bacterial adherence to mucosal surface epithelial cells is not a significant phenomenon, either in healthy mucosa in the upper airways or during infection. This is also in line with our earlier results, where we have shown that the site for the infectious process in pharyngotonsillitis is in the secretion on the tonsillar mucosal surface
    corecore