32 research outputs found

    Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    Get PDF
    BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression

    Evolution of Resistance to Aurora Kinase B Inhibitors in Leukaemia Cells

    Get PDF
    Aurora kinase inhibitors are new mitosis-targeting drugs currently in clinical trials for the treatment of haematological and solid malignancies. However, knowledge of the molecular factors that influence sensitivity and resistance remains limited. Herein, we developed and characterised an in vitro leukaemia model of resistance to the Aurora B inhibitor ZM447439. Human T-cell acute lymphoblastic leukaemia cells, CCRF-CEM, were selected for resistance in 4 µM ZM447439. CEM/AKB4 cells showed no cross-resistance to tubulin-targeted and DNA-damaging agents, but were hypersensitive to an Aurora kinase A inhibitor. Sequencing revealed a mutation in the Aurora B kinase domain corresponding to a G160E amino acid substitution. Molecular modelling of drug binding in Aurora B containing this mutation suggested that resistance is mediated by the glutamate substitution preventing formation of an active drug-binding motif. Progression of resistance in the more highly selected CEM/AKB8 and CEM/AKB16 cells, derived sequentially from CEM/AKB4 in 8 and 16 µM ZM447439 respectively, was mediated by additional defects. These defects were independent of Aurora B and multi-drug resistance pathways and are associated with reduced apoptosis mostly likely due to reduced inhibition of the catalytic activity of aurora kinase B in the presence of drug. Our findings are important in the context of the use of these new targeted agents in treatment regimes against leukaemia and suggest resistance to therapy may arise through multiple independent mechanisms

    Rhodium(I) and iridium(I) complexes with bidentate phosphine-pyrazolyl ligands: highly efficient catalysts for the hydroamination reaction

    No full text
    A range of rhodium(I) and iridium(I) complexes containing bidentate phosphine−pyrazolyl ligands of general formulas [M(R2PyP)(COD)]BPh4 (R = Me, iPr, Ph, M = Ir, 3b−3d and M = Rh, 4b−4d), [Ir(R2PyP)(CO)2]BPh4 (R = Me, iPr, 5b,5c), and [M(R2PyP)(CO)Cl] (R = Me, iPr, Ph, M = Ir, 6b−6d and M = Rh, 7b−7d) were successfully synthesized. A number of these complexes and their analogues with unsubstituted ligands are extremely active as catalysts for the intramolecular hydroamination of alkynes. The air-stable cationic iridium complexes containing 1,5-cyclooctadiene, COD, as co-ligands, [Ir(R2PyP)(COD)]BPh4 (R = H, Me, iPr, and Ph, 3a−3d), are efficient as catalysts for the cyclization of 4-pentyn-1-amine (8) to 2-methyl-1-pyrroline (9) with the turnover rate at 50% conversion (Nt) of up to 3100 h-1, at 60 °C. The cationic iridium complexes containing carbonyl co-ligands, [Ir(R2PyP)(CO)2]BPh4 (R = H, Me, iPr, 5a−5c), are moderately effective in catalyzing this reaction, and the neutral complexes [M(R2PyP)(CO)Cl] (M = Ir, 6a Ir, 7a) are ineffective. Generally, an increase in steric bulk of the substituent R near the nitrogen donor leads to an improvement in catalytic performance of the resulting metal complexes
    corecore