887 research outputs found

    A numerical study of a method for measuring the effective in situ sound absorption coefficient

    Get PDF
    The accuracy of a method [Wijnant et al., “Development and applica- tion of a new method for the in-situ measurement of sound absorption”, ISMA 31, Leuven, Belgium (2010).], for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assump- tion, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields

    Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    Full text link
    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the resulting quality factor Q for cantilever and bridge micro- and nanoresonators in close proximity to an underlying substrate are derived and the relevance of the mechanism is investigated, demonstrating its importance when nanometric gaps are involved

    Simulations of Time-Resolved X-Ray Diffraction in Laue Geometry

    Full text link
    A method of computer simulation of Time-Resolved X-ray Diffraction (TRXD) in asymmetric Laue (transmission) geometry with an arbitrary propagating strain perpendicular to the crystal surface is presented. We present two case studies for possible strain generation by short-pulse laser irradiation: (i) a thermoelastic-like analytic model; (ii) a numerical model including effects of electron-hole diffusion, Auger recombination, deformation potential and thermal diffusion. A comparison with recent experimental results is also presented.Comment: 9 pages, 11 figure

    Supersonic strain front driven by a dense electron-hole plasma

    Get PDF
    We study coherent strain in (001) Ge generated by an ultrafast laser-initiated high density electron-hole plasma. The resultant coherent pulse is probed by time-resolved x-ray diffraction through changes in the anomalous transmission. The acoustic pulse front is driven by ambipolar diffusion of the electron-hole plasma and propagates into the crystal at supersonic speeds. Simulations of the strain including electron-phonon coupling, modified by carrier diffusion and Auger recombination, are in good agreement with the observed dynamics.Comment: 4 pages, 6 figure

    An exchange-correlation energy for a two-dimensional electron gas in a magnetic field

    Full text link
    We present the results of a variational Monte Carlo calculation of the exchange-correlation energy for a spin-polarized two-dimensional electron gas in a perpendicular magnetic field. These energies are a necessary input to the recently developed current-density functional theory. Landau-level mixing is included in a variational manner, which gives the energy at finite density at finite field, in contrast to previous approaches. Results are presented for the exchange-correlation energy and excited-state gap at ν=\nu = 1/7, 1/5, 1/3, 1, and 2. We parameterize the results as a function of rsr_s and ν\nu in a form convenient for current-density functional calculations.Comment: 36 pages, including 6 postscript figure

    Phenotype standardization for statin-induced myotoxicity

    Get PDF
    Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.</p

    Correlation effects in a quantum dot at high magnetic fields

    Full text link
    We investigate the effects of electron correlations on the ground state energy and the chemical potential of a droplet confined by a parabolic potential at high magnetic fields. We demonstrate the importance of correlations in estimating the transition field at which the first edge reconstruction of the maximum density droplet occurs in the spin polarized regime.Comment: 11 pages (revtex) 3 postscript figures are included at the end of the tex file. To appear in Phys. Rev.

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    Modal Rayleigh-like streaming in layered acoustofluidic devices

    No full text
    Classical Rayleigh streaming is well known and can be modelled using Nyborg’s limiting velocity method as driven by fluid velocities adjacent to the walls parallel to the axis of the main acoustic resonance. We have demonstrated previously the existence and the mechanism of four-quadrant transducer plane streaming patterns in thin-layered acoustofluidic devices which are driven by the limiting velocities on the walls perpendicular to the axis of the main acoustic propagation. We have recently found experimentally that there is a third case which resembles Rayleigh streaming but is a more complex pattern related to three-dimensional cavity modes of an enclosure. This streaming has vortex sizes related to the effective wavelength in each cavity axis of the modes which can be much larger than those found in the one-dimensional case with Rayleigh streaming. We will call this here modal Rayleigh-like streaming and show that it can be important in layered acoustofluidic manipulation devices. This paper seeks to establish the conditions under which each of these is dominant and shows how the limiting velocity field for each relates to different parts of the complex acoustic intensity patterns at the driving boundaries
    • …
    corecore