277 research outputs found

    PHYSICOCHEMICAL CHARACTERIZATION OF MOUSE MYELOMA PROTEINS: DEMONSTRATION OF HETEROGENEITY FOR EACH MYELOMA GLOBULIN

    Get PDF
    Physicochemical characterization of mouse myeloma proteins revealed the individuality of each myeloma protein. When the myeloma proteins are considered collectively a wide range of individual properties were represented, including electrophoretic mobilities varying from the gamma to alpha region, hexose contents from 1 to 4 per cent, and ultracentrifugal components from 6.5 to 13 S. The 20 myeloma proteins could be divided into groups, the gamma type and the beta type myeloma globulins, on the basis of physicochemical, as well as immunoelectrophoretic, studies. Two gamma type myeloma proteins (5563, MPC-11) resembled normal gamma globulins, sedimenting as a single 6.5 S peak in the ultracentrifuge, and having a relatively low hexose content (1 per cent). Eighteen beta type mouse myeloma proteins differed from gamma myeloma proteins and, typically, were found on ultracentrifugal analysis to have multiple components with sedimentation coefficients of 6.5, 9, 11, and 13 S, having a higher hexose content (2 to 4 per cent) as well as distinctive chromatographic and starch gel electrophoretic properties. All of the mouse myeloma proteins were heterogeneous and heterogeneity of two types was observed. Polymer formation was responsible for the 9, 11, and/or 13 S components seen on ultracentrifugation of the beta type myeloma proteins. Starch gel electrophoresis revealed this type of heterogeneity as relatively widely separated myeloma protein components, presumably owing to the retardation effect of starch gel on the electrophoretic migration of the larger polymers. Starch gel electrophoresis revealed a different type of heterogeneity for the two gamma type myeloma proteins, each of these being shown to contain 5 or more components differing only in electrophoretic properties. The physicochemical characteristics of the γ-type and β-type myeloma proteins in the mouse indicated the close similarity of these proteins to the γ- and β-2A-myeloma proteins in man

    THE IMMUNOGLOBULINS OF MICE : V. THE METABOLIC (CATABOLIC) PROPERTIES OF FIVE IMMUNOGLOBULIN CLASSES

    Get PDF
    The metabolic properties of immunoglobulin were investigated by comparing five classes of mouse immunoglobulin. Three forms of 7S immunoglobulin had different rates of catabolism. The fractional rates of catabolism were found to be about 13 per cent per day for 7S γ2a-globulin; 25 per cent for 7S γ2b-globulin; and 17 per cent for 7S γ1-globulin. Catabolism of the three classes of 7S γ-globulin (γ2a, γ2b, and γ1) were prolonged at low serum 7S γ-globulin levels and accelerated at high serum 7S γ-globulin levels. Each of the 7S γ-globulin components was influenced by the serum level of the other mouse 7S γ-globulin components and by exogenously administered human 7S γ-globulin. They were not appreciably altered, however, by the serum level of IgA (γ1A-, β2A-globulin). The progressively changing (longer) half-times observed in turnover studies of normal IgG (7S γ-globulin) may be caused by catabolic heterogeneity of normal 7S immunoglobulins which are immunochemically and catabolically related to γ2a-, γ2b-, and 7S γ1-myeloma proteins. These studies indicate that the 7S γ2a-, 7S γ2b-, and 7S γ1-globulins share a common catabolic control mechanism. This mechanism is influenced by the serum level of each of these components, but is independent of the serum level of IgA (γ1A-globulin) and probably is independent of IgM (γ1M-globulin). Catabolism of IgA (γ1A-, β2A-globulin) and IgM (γ1M-globulin) was much more rapid than the catabolism of the 7S γ-globulins. The halftimes of the IgA and IgM were approximately 1.2 and 0.5 days respectively. The fractional rate of catabolism of IgA and IgM seemed to be independent of their serum concentration. The rate of catabolism, as well as the rate of synthesis, was shown to play a major role in determining the serum level of each class of immunoglobulin

    A NEW CLASS OF HUMAN IMMUNOGLOBULINS

    Full text link

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    Knowledge and Attitudes about HIV/AIDS among Homoeopathic Practitioners and Educators in India

    Get PDF
    This study is designed to assess AIDS knowledge among Homeopathy educators and physicians in India, which has not been evaluated previously. India now has the largest number of HIV infected persons worldwide, with an estimated cumulative 5.1 million infections. Homeopathy is the dominant system among the nationally-recognized alternative or complementary systems of medicine, which collectively provide health care to around 600 million people in India. Homeopathy, with its holistic and patient-centered approach, has a wide reach to people at risk of contracting human immunodeficiency virus (HIV). Participants were 68 homeopathy physicians (34 educators and 34 practitioners) who completed a CDC questionnaire measuring HIV/AIDS Knowledge regarding AIDS. This study reports the current level of knowledge of, and attitudes about, HIV/AIDS among homeopathy educators and practitioners. These findings will assist in the development of an education module to equip homeopathic health care personnel to impart accurate AIDS information and prevention counseling to their patients in an efficient manner
    • …
    corecore