23 research outputs found

    Legume tasters: symbiotic rhizobia host preference and smart inoculant formulations

    Get PDF
    Mutualistic interactions have great importance in ecology, with genetic infor-mation that takes shape through interactions within the symbiotic partners and between the partners and the environment. It is known that variation of the host-associated microbiome contributes to buffer adaptation challenges of the host’s physiology when facing varying environmental conditions. In agriculture, pivotal examples are symbiotic nitrogen-fixing rhizobia, known to contribute greatly to host (legume plants) adaptation and host productivity. A holistic view of increasing crop yield and resistance to biotic and abiotic stresses is that of microbiome engineering, the exploitation of a host-associated microbiome through its rationally designed manipulation with synthetic microbial commu-nities. However, several studies highlighted that the expression of the desired phenotype in the host resides in species-specific, even genotype-specific in-teractions between the symbiotic partners. Consequently, there is a need to dissect such an intimate level of interaction, aiming to identify the main ge-netic components in both partners playing a role in symbiotic differences/host preferences. In the present paper, while briefly reviewing the knowledge and the challenges in plant–microbe interaction and rhizobial studies, we aim to promote research on genotype x genotype interaction between rhizobia and host plants for a rational design of synthetic symbiotic nitrogen-fixing microbial communities to be used for sustainably improving leguminous plants yield

    Deciphering the symbiotic plant microbiome: Translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands

    Get PDF
    Rhizosphere and plant-associated microorganisms have been intensely studied for their beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB) and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result of the interactions between the plant genome and its associated microbiome. Here, we provide a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies to improve crop yield

    Harnessing rhizobia to improve heavy-metal phytoremediation by legumes

    Get PDF
    Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices

    Exploring the Bacterial Communities of Infernaccio Waterfalls: A Phenotypic and Molecular Characterization of Acinetobacter and Pseudomonas Strains Living in a Red Epilithic Biofilm

    Get PDF
    Acquarossa river (Viterbo, Italy) was the site of a prospering Etruscan civilization thanks to metallurgical activity around 625-550 B.C. This caused the spread of heavy metals throughout the area. Rocks along the river probably act as a filter for these elements and they are covered by two different biofilms (epilithons). They differ for both color and bacterial composition. One is red and is enriched with Pseudomonas strains, while the other one is black and Acinetobacter is the most represented genus. Along the river lay the Infernaccio waterfalls, whose surrounding rocks are covered only by the red epilithon. The bacterial composition of this biofilm was analyzed through high throughput sequencing and compared to those ones of red and black epilithons of Acquarossa river. Moreover, cultivable bacteria were isolated and their phenotype (i.e., resistance against antibiotics and heavy metals) was studied. As previously observed in the case of Acquarossa river, characterization of bacterial composition of the Infernaccio red epilithon revealed that the two most represented genera were Acinetobacter and Pseudomonas. Nonetheless, these strains differed from those isolated from Acquarossa, as revealed by RAPD analysis. This work, besides increasing knowledge about the ecological properties of this site, allowed to isolate new bacterial strains, which could potentially be exploited for biotechnological applications, because of their resistance against environmental pollutants

    Diauxie and co-utilization of carbon sources can coexist during bacterial growth in nutritionally complex environments

    Get PDF
    It is commonly thought that when multiple carbon sources are available, bacteria metabolize them either sequentially (diauxic growth) or simultaneously (co-utilization). However, this view is mainly based on analyses in relatively simple laboratory settings. Here we show that a heterotrophic marine bacterium, Pseudoalteromonas haloplanktis, can use both strategies simultaneously when multiple possible nutrients are provided in the same growth experiment. The order of nutrient uptake is partially determined by the biomass yield that can be achieved when the same compounds are provided as single carbon sources. Using transcriptomics and time-resolved intracellular 1H-13C NMR, we reveal specific pathways for utilization of various amino acids. Finally, theoretical modelling indicates that this metabolic phenotype, combining diauxie and co-utilization of substrates, is compatible with a tight regulation that allows the modulation of assimilatory pathways

    Harmful Effect of Rheinheimera sp. EpRS3 (Gammaproteobacteria) Against the Protist Euplotes aediculatus (Ciliophora, Spirotrichea): Insights Into the Ecological Role of Antimicrobial Compounds From Environmental Bacterial Strains

    Get PDF
    Rheinheimera sp. strain EpRS3, isolated from the rhizosphere of Echinacea purpurea, is already known for its ability to produce antibacterial compounds. By use of culture experiments, we verified and demonstrated its harmful effect against the ciliated protist Euplotes aediculatus (strain EASCc1), which by FISH experiments resulted to harbor in its cytoplasm the obligate bacterial endosymbiont Polynucleobacter necessarius (Betaproteobacteria) and the secondary endosymbiont "Candidatus Nebulobacter yamunensis" (Gammaproteobacteria). In culture experiments, the number of ciliates treated both with liquid broth bacteria-free (Supernatant treatment) and bacteria plus medium (Tq treatment), decreases with respect to control cells, with complete disappearance of ciliates within 6 h after Tq treatment. Results suggest that Rheinheimera sp. EpRS3 produces and releases in liquid culture one or more bioactive molecules affecting E. aediculatus survival. TEM analysis of control (not treated) ciliates allowed to morphologically characterize both kind of E. aediculatus endosymbionts. In treated ciliates, collected soon after the arising of cell suffering leading to death, TEM observations revealed some ultrastructural damages, indicating that P. necessarius endosymbionts went into degradation and vacuolization after both Supernatant and Tq treatments. Additionally, TEM investigation showed that when the ciliate culture was inoculated with Tq treatment, both a notable decrease of P. necessarius number and an increase of damaged and degraded mitochondria occur. FISH experiments performed on treated ciliates confirmed TEM results and, by means of the specific probe herein designed, disclosed the presence of Rheinheimera sp. EpRS3 both inside phagosomes and free in cytoplasm in ciliates after Tq treatment. This finding suggests a putative ability of Rheinheimera sp. EpRS3 to reintroduce itself in the environment avoiding ciliate digestion
    corecore