1,286 research outputs found
On Making Good Games - Using Player Virtue Ethics and Gameplay Design Patterns to Identify Generally Desirable Gameplay Features
This paper uses a framework of player virtues to perform a
theoretical exploration of what is required to make a game
good. The choice of player virtues is based upon the view
that games can be seen as implements, and that these are
good if they support an intended use, and the intended use
of games is to support people to be good players. A collection of gameplay design patterns, identified through
their relation to the virtues, is presented to provide specific starting points for considering design options for this type of good games. 24 patterns are identified supporting the virtues, including RISK/REWARD, DYNAMIC ALLIANCES, GAME MASTERS, and PLAYER DECIDED RESULTS, as are 7 countering three or more virtues, including ANALYSIS
PARALYSIS, EARLY ELIMINATION, and GRINDING. The paper concludes by identifying limitations of the approach as well as by showing how it can be applied using other views of what are preferable features in games
Composition with Target Constraints
It is known that the composition of schema mappings, each specified by
source-to-target tgds (st-tgds), can be specified by a second-order tgd (SO
tgd). We consider the question of what happens when target constraints are
allowed. Specifically, we consider the question of specifying the composition
of standard schema mappings (those specified by st-tgds, target egds, and a
weakly acyclic set of target tgds). We show that SO tgds, even with the
assistance of arbitrary source constraints and target constraints, cannot
specify in general the composition of two standard schema mappings. Therefore,
we introduce source-to-target second-order dependencies (st-SO dependencies),
which are similar to SO tgds, but allow equations in the conclusion. We show
that st-SO dependencies (along with target egds and target tgds) are sufficient
to express the composition of every finite sequence of standard schema
mappings, and further, every st-SO dependency specifies such a composition. In
addition to this expressive power, we show that st-SO dependencies enjoy other
desirable properties. In particular, they have a polynomial-time chase that
generates a universal solution. This universal solution can be used to find the
certain answers to unions of conjunctive queries in polynomial time. It is easy
to show that the composition of an arbitrary number of standard schema mappings
is equivalent to the composition of only two standard schema mappings. We show
that surprisingly, the analogous result holds also for schema mappings
specified by just st-tgds (no target constraints). This is proven by showing
that every SO tgd is equivalent to an unnested SO tgd (one where there is no
nesting of function symbols). Similarly, we prove unnesting results for st-SO
dependencies, with the same types of consequences.Comment: This paper is an extended version of: M. Arenas, R. Fagin, and A.
Nash. Composition with Target Constraints. In 13th International Conference
on Database Theory (ICDT), pages 129-142, 201
Forecasting inflation using dynamic model averaging
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coefficients to change over time, but also allow for the entire forecasting model to change over time. We find that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coefficient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period
Hypergraph Acyclicity and Propositional Model Counting
We show that the propositional model counting problem #SAT for CNF- formulas
with hypergraphs that allow a disjoint branches decomposition can be solved in
polynomial time. We show that this class of hypergraphs is incomparable to
hypergraphs of bounded incidence cliquewidth which were the biggest class of
hypergraphs for which #SAT was known to be solvable in polynomial time so far.
Furthermore, we present a polynomial time algorithm that computes a disjoint
branches decomposition of a given hypergraph if it exists and rejects
otherwise. Finally, we show that some slight extensions of the class of
hypergraphs with disjoint branches decompositions lead to intractable #SAT,
leaving open how to generalize the counting result of this paper
Performance Evaluation and Optimization of Math-Similarity Search
Similarity search in math is to find mathematical expressions that are
similar to a user's query. We conceptualized the similarity factors between
mathematical expressions, and proposed an approach to math similarity search
(MSS) by defining metrics based on those similarity factors [11]. Our
preliminary implementation indicated the advantage of MSS compared to
non-similarity based search. In order to more effectively and efficiently
search similar math expressions, MSS is further optimized. This paper focuses
on performance evaluation and optimization of MSS. Our results show that the
proposed optimization process significantly improved the performance of MSS
with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure
Probabilistic Algorithmic Knowledge
The framework of algorithmic knowledge assumes that agents use deterministic
knowledge algorithms to compute the facts they explicitly know. We extend the
framework to allow for randomized knowledge algorithms. We then characterize
the information provided by a randomized knowledge algorithm when its answers
have some probability of being incorrect. We formalize this information in
terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a
query about a fact \phi provides evidence for \phi being true. Finally, we
discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK'03
Representational task formats and problem solving strategies in kinematics and work
Previous studies have reported that students employed different problem solving approaches when presented with the same task structured with different representations. In this study, we explored and compared students’ strategies as they attempted tasks from two topical areas, kinematics and work. Our participants were 19 engineering students taking a calculus-based physics course. The tasks were presented in linguistic, graphical, and symbolic forms and requested either a qualitative solution or a value. The analysis was both qualitative and quantitative in nature focusing principally on the characteristics
of the strategies employed as well as the underlying reasoning for their applications. A comparison was also made for the same student’s approach with the same kind of representation across the two topics.
Additionally, the participants’ overall strategies across the different tasks, in each topic, were considered. On the whole, we found that the students prefer manipulating equations irrespective of the representational format of the task. They rarely recognized the applicability of a ‘‘qualitative’’ approach to solve the
problem although they were aware of the concepts involved. Even when the students included visual representations in their solutions, they seldom used these representations in conjunction with the
mathematical part of the problem. Additionally, the students were not consistent in their approach for interpreting and solving problems with the same kind of representation across the two topical areas. The representational format, level of prior knowledge, and familiarity with a topic appeared to influence their
strategies, their written responses, and their ability to recognize qualitative ways to attempt a problem. The nature of the solution does not seem to impact the strategies employed to handle the problem
- …