341 research outputs found

    Fluid flow and heat transfer in a dual-wet micro heat pipe

    Get PDF
    Micro heat pipes have been used to cool micro electronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. In this work, a dual-wet pipe is proposed as a model to study heat transfer in micro heat pipes. The dual-wet pipe has a long and narrow cavity of rectangular cross-section. The bottom-half of the horizontal pipe is made of a wetting material, and the top-half of a non-wetting material. A wetting liquid fills the bottom half of the cavity, while its vapour fills the rest. This configuration ensures that the liquid–vapour interface is pinned at the contact line. As one end of the pipe is heated, the liquid evaporates and increases the vapour pressure. The higher pressure drives the vapour to the cold end where the vapour condenses and releases the latent heat. The condensate moves along the bottom half of the pipe back to the hot end to complete the cycle. We solve the steady-flow problem assuming a small imposed temperature difference between the two ends of the pipe. This leads to skew-symmetric fluid flow and temperature distribution along the pipe so that we only need to focus on the evaporative half of the pipe. Since the pipe is slender, the axial flow gradients are much smaller than the cross-stream gradients. Thus, we can treat the evaporative flow in a cross-sectional plane as two-dimensional. This evaporative motion is governed by two dimensionless parameters: an evaporation number E defined as the ratio of the evaporative heat flux at the interface to the conductive heat flux in the liquid, and a Marangoni number M. The motion is solved in the limit E→∞ and M→∞. It is found that evaporation occurs mainly near the contact line in a small region of size E−1W, where W is the half-width of the pipe. The non-dimensional evaporation rate Q* ~ E−1 ln E as determined by matched asymptotic expansions. We use this result to derive analytical solutions for the temperature distribution Tp and vapour and liquid flows along the pipe. The solutions depend on three dimensionless parameters: the heat-pipe number H, which is the ratio of heat transfer by vapour flow to that by conduction in the pipe wall and liquid, the ratio R of viscous resistance of vapour flow to interfacial evaporation resistance, and the aspect ratio S. If HRxs226B1, a thermal boundary layer appears near the pipe end, the width of which scales as (HR)−1/2L, where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, Tp varies linearly with a gradual slope. Thus, these regions correspond to the evaporative, adiabatic and condensing regions commonly observed in conventional heat pipes. This is the first time that the distinct regions have been captured by a single solution, without prior assumptions of their existence. If HR ~ 1 or less, then Tp is linear almost everywhere. This is the case found in most micro-heat-pipe experiments. Our analysis of the dual-wet pipe provides an explanation for the comparatively low effective thermal conductivity in micro heat pipes, and points to ways of improving their heat transfer capabilities

    The Occurrence of Type I, II, and III Integrons in Multi-drug Resistance and Methicillin-Resistant Staphylococcus aureus Isolates in Iran

    Get PDF
    Integrons are mobilizable platforms-DNA elements with impacts on moving antibiotic resistance genes among bacteria and capable of spreading multi-drug resistance (MDR) in pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) strains are the main cause of community-acquired and nosocomial infections with high mortality and morbidity rates worldwide. This work is mainly aimed at calculating the frequency of Type I, II, and III integrons within multi-drug resistance and Methicillin-resistant S. aureus Isolates in Iran. In this cross-sectional study, 230 clinical isolates of S. aureus were gathered from patients of educational hospitals in the provinces of Iran. These isolates were verified utilizing particular biochemical examinations and then assessed for antibiotic susceptibility through disk diffusion technique and standard procedures were done. Genomic and plasmid DNA of all isolates were extracted using Extraction Kit and PCR assay was used for the detection of Type I, II and III integrons genes. Out of the 230 S. aureus isolates, 136 (59.1) isolates were MRSA and 141 (61.3) isolates exhibited the MDR pattern. PCR and sequencing showed that 57 (24.8) of tested isolates carry Type I integron. Among the isolates investigated, MRSA and MDR isolates showed frequencies of 56.1 and 57.9, respectively. Type II and III integrons were found in none of 230 isolates. The IntI I gene was present in approximately one-quarter of this study isolates. The great prevalence rate of MDR and MRSA isolates and concurrently the existence of Type I integron among those isolates have been considered an important concern in medical society. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    Get PDF
    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more than 135 watts of heater power. 4) The LHP reservoir control heater power is limited to 15 watts with a 70 percent duty cycle. 5) The voltage of the power supply can vary between 26 volts direct current and 34 volts direct current during the spacecraft lifetime. A design analysis shows that a single LTCS can satisfy these requirements. However, shutdown of the LHP is particularly challenging and the shutdown heater must be wired in series with two reservoir thermostats and two CCHP thermostats at different set points. An LTCS demonstration unit has been tested to verify these performance characteristics experimentally prior to proceeding to the final LTCS design and fabrication. Test results showed that the LHP shutdown scheme would be able to shut down the LHP as designed and the reservoir control heater can maintain the ATLAS mass simulator within the plus or minus 1 degrees Centigrade accuracy under various combinations of the heat load, sink temperature, and power supply voltage

    Alteration of Bax-to-Bcl-2 ratio modulates the anticancer activity of methanolic extract of Commelina benghalensis (Commelinaceae) in Jurkat T cells

    Get PDF
    Stem extracts of Commelina benghalensis (Linn.), although not extensively documented, are frequently used in traditional medicine for the treatment of ailments such as skin malformations and outgrowths. Accordingly, the study was aimed to investigate possible molecular mechanisms that are associated with the potential anti-carcinogenic property of this agrofield weed. Jurkat T cells were exposed to different concentrations (0-600 ug/ml) of the crude methanolic extract of C. benghalensis to evaluate their growth inhibitory and apoptosis inducing effects. The extract elicited a dose- and time-dependent inhibition of cell proliferation, followed by a concomitant decrease in cell viability. The observed cytotoxicity was linked to the induction of apoptosis as determined by morphological and biochemical features known to be associated with the advent of apoptosis. Real time quantitative RT-PCR and Western blot analyses of Bax, Bcl-2 and p53 exhibited aberrant expression profiles of these genes under various treatment conditions. Taken together, the data suggest that the crude methanolic extract of C. benghalensis contains bioactive compounds that may be beneficial in the treatment of malignant growths, and that this apparent antineoplastic activity is a consequence of dysregulated expression of apoptosis-responsive genes. These observations could provide a credible scientific justification upon which the ethnopharmacological utilisation of C. benghalensis is founded

    Considering the Differential Impact of Three Facets of Organizational Health Climate on Employees’ Well-Being

    Get PDF
    One potential way that healthy organizations can impact employee health is by promoting a climate for health within the organization. Using a definition of health climate that includes support for health from multiple levels within the organization, this study examines whether all three facets of health climate—the workgroup, supervisor, and organization—work together to contribute to employee well-being. Two samples are used in this study to examine health climate at the individual level and group level in order to provide a clearer picture of the impact of the three health climate facets. k-means cluster analysis was used on each sample to determine groups of individuals based on their levels of the three health climate facets. A discriminant function analysis was then run on each sample to determine if clusters differed on a function of employee well-being variables. Results provide evidence that having strength in all three of the facets is the most beneficial in terms of employee well-being at work. Findings from this study suggest that organizations must consider how health is treated within workgroups, how supervisors support employee health, and what the organization does to support employee health when promoting employee health

    High prevalence of fluoroquinolone-resistant Escherichia coli strains isolated from urine clinical samples

    Get PDF
    Background. Fluoroquinolone resistant Escherichia coli isolates have become an important challenge in healthcare settings in Iran. In this study, we have determined Fluoroquinolone resistant E. coli isolates (from both outpatients and inpatients) and evaluated mutations of gyrA and parC within the quinolone resistancedetermining regions (QRDR) of these clinical isolates. Materials and methods. Clinical isolates were recovered from the urine sample of patients with urinary tract infections admitted at Alzahra hospital, Iran, between September and February 2013. We assessed antimicrobial susceptibility of all isolates and determined mutations in QRDR of gyrA and parC genes from 13 fluoroquinolone-resistant isolates by DNA sequencing. Results. A total of 135 E. coli strains were obtained from 135 patients (91 outpatients and 44 inpatients). The resistance rate of fluoroquinolones (Ciprofloxacin, Norfloxacin and Ofloxacin) among our strains was 45.2. Two E. coli isolates were shown just a single mutation, but other isolates possessed 2-5 mutations in gyrA and parC genes. Mutations in the QRDR regions of gyrA were at positions Ser83 and Asp87 and parC at positions Ser80, Glu84, Gly78. Conclusions. Ciprofloxacin is the most common antimicrobial agent used for treating urinary tract infections (UTIs) in healthcare settings in Iran. Accumulation of different substitutions in the QRDR regions of gyrA and parC confers high-level resistance of fluoroquinolones in clinical isolates. © 2019 Pacini Editore SPA. All rights reserved
    corecore