626 research outputs found

    Visualising muscle anatomy using three-dimensional computer models - an example using the head and neck muscles of Sphenodon

    Get PDF
    We demonstrate how the computer-based technique of multi-body dynamics analysis (MDA) can be used to create schematic, but informative three-dimensional (3D) representations of complex muscle anatomy. As an example we provide an overview of the head and neck muscles present in Sphenodon (Diapsida: Lepidosauria: Rhynchocephalia). First a computer model based on micro-computed tomography datasets provides a detailed and anatomically correct three-dimensional (3D) framework to work from. Secondly, muscles are represented by groups of cylinders that can be colour coded as desired. This allows muscle positions, attachment areas, and 3D orientation to be visualised clearly. This method has advantages over imaging techniques such as two-dimensional drawings and permits the form and function of the muscles to be understood in a way that is not always possible with more classical visualisation techniques. Copyright: Palaeontological Association December 2009

    Computational biomechanical modelling of the rabbit cranium during mastication

    Get PDF
    Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, the rabbit is a particularly interesting species due to its uniquely fenestrated rostrum, the mechanical function of which is debated. In addition, the rabbit processes food through incisor and molar biting within a single bite cycle, and the potential influence of these bite modes on skull biomechanics remains unknown. This study combined the in silico methods of multi-body dynamics and finite element analysis to compute musculoskeletal forces associated with a range of incisor and molar biting, and to predict the associated strains. The results show that the majority of the cranium, including the fenestrated rostrum, transmits masticatory strains. The peak strains generated over all bites were found to be attributed to both incisor and molar biting. This could be a consequence of a skull shape adapted to promote an even strain distribution for a combination of infrequent incisor bites and cyclic molar bites. However, some regions, such as the supraorbital process, experienced low peak strain for all masticatory loads considered, suggesting such regions are not designed to resist masticatory forces

    Predicting calvarial growth in normal and craniosynostosic mice using finite element analysis

    Get PDF

    Biomechanics of craniofacial development in mice

    Get PDF

    In vivo cranial bone strain and bite force in the agamid lizard Uromastyx geyri

    Get PDF
    In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology

    Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.</p> <p>Methods</p> <p>Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and neurological outcome.</p> <p>Results</p> <p>Infarct size was significantly smaller in GK rats (10 ± 2 vs 30 ± 4%, p < 0.001). There was significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 ± 0.01 vs 1.34 ± 0.06, P < 0.001) indicative of changes in vessel architecture.</p> <p>Conclusion</p> <p>These findings provide evidence that there is cerebrovascular remodeling in diabetes. While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral ischemia/reperfusion in diabetes.</p

    Spatial organization of Clostridium difficile S-layer biogenesis

    Get PDF
    Surface layers (S-layers) are protective protein coats which form around all archaea and most bacterial cells. Clostridium difficile is a Gram-positive bacterium with an S-layer covering its peptidoglycan cell wall. The S-layer in C. difficile is constructed mainly of S-layer protein A (SlpA), which is a key virulence factor and an absolute requirement for disease. S-layer biogenesis is a complex multi-step process, disruption of which has severe consequences for the bacterium. We examined the subcellular localization of SlpA secretion and S-layer growth; observing formation of S-layer at specific sites that coincide with cell wall synthesis, while the secretion of SlpA from the cell is relatively delocalized. We conclude that this delocalized secretion of SlpA leads to a pool of precursor in the cell wall which is available to repair openings in the S-layer formed during cell growth or following damage

    Regional variation of the cortical and trabecular bone material properties in the rabbit skull

    Get PDF
    The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible

    Towards an Intraoral-Based Silent Speech Restoration System for Post-laryngectomy Voice Replacement

    Full text link
    © Springer International Publishing AG 2017, Silent Speech Interfaces (SSIs) are alternative assistive speech technologies that are capable of restoring speech communication for those individuals who have lost their voice due to laryngectomy or diseases affecting the vocal cords. However, many of these SSIs are still deemed as impractical due to a high degree of intrusiveness and discomfort, hence limiting their transition to outside of the laboratory environment. We aim to address the hardware challenges faced in developing a practical SSI for post-laryngectomy speech rehabilitation. A new Permanent Magnet Articulography (PMA) system is presented which fits within the palatal cavity of the user’s mouth, giving unobtrusive appearance and high portability. The prototype is comprised of a miniaturized circuit constructed using commercial off-the-shelf (COTS) components and is implemented in the form of a dental retainer, which is mounted under roof of the user’s mouth and firmly clasps onto the upper teeth. Preliminary evaluation via speech recognition experiments demonstrates that the intraoral prototype achieves reasonable word recognition accuracy and is comparable to the external PMA version. Moreover, the intraoral design is expected to improve on its stability and robustness, with a much improved appearance since it can be completely hidden inside the user’s mouth

    Assessing the psychometric and ecometric properties of neighborhood scales using adolescent survey data from urban and rural Scotland

    Get PDF
    This work was supported by NHS Health Scotland and the University of St Andrews.Background:  Despite the well-established need for specific measurement instruments to examine the relationship between neighborhood conditions and adolescent well-being outcomes, few studies have developed scales to measure features of the neighborhoods in which adolescents reside. Moreover, measures of neighborhood features may be operationalised differently by adolescents living in different levels of urban/rurality. This has not been addressed in previous studies. The objectives of this study were to: 1) establish instruments to measure adolescent neighborhood features at both the individual and neighborhood level, 2) assess their psychometric and ecometric properties, 3) test for invariance by urban/rurality, and 4) generate neighborhood level scores for use in further analysis. Methods:  Data were from the Scottish 2010 Health Behaviour in School-aged Children Survey, which included an over-sample of rural adolescents. The survey responses of interest came from questions designed to capture different facets of the local area in which each respondent resided. Intermediate data zones were used as proxies for neighborhoods. Internal consistency was evaluated by Cronbach’s alpha. Invariance was examined using confirmatory factor analysis. Multilevel models were used to estimate ecometric properties and generate neighborhood scores. Results:  Two constructs labeled neighborhood social cohesion and neighborhood disorder were identified. Adjustment was made to the originally specified model to improve model fit and measures of invariance. At the individual level, reliability was .760 for social cohesion and .765 for disorder, and between .524 and .571 for both constructs at the neighborhood level. Individuals in rural areas experienced greater neighborhood social cohesion and lower levels of neighborhood disorder compared with those in urban areas. Conclusions:  The scales are appropriate for measuring neighborhood characteristics experienced by adolescents across urban and rural Scotland, and can be used in future studies of neighborhoods and health. However, trade-offs between neighborhood sample size and reliability must be considered.Publisher PDFPeer reviewe
    • …
    corecore