209 research outputs found
Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface
Angle-resolved ultraviolet photoemission spectra are interpreted by combining
the energetics and spatial properties of the contributing states. One-step
calculations are in excellent agreement with new azimuthal experimental data
for GaAs(110). Strong variations caused by the dispersion of the surface bands
permit an accurate mapping of the electronic structure. The delocalization of
the valence states is discussed analogous to photoelectron diffraction. The
spatial origin of the electrons is determined, and found to be strongly energy
dependent, with uv excitation probing the bonding region.Comment: 5 pages, 3 figures, submitted for publicatio
Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films
X-ray photoelectron diffraction is used to directly probe the intra-cell
polar atomic distortion and tetragonality associated with ferroelectricity in
ultrathin epitaxial PbTiO3 films. Our measurements, combined with ab-initio
calculations, unambiguously demonstrate non-centro-symmetry in films a few unit
cells thick, imply that films as thin as 3 unit cells still preserve a
ferroelectric polar distortion, and also show that there is no thick
paraelectric dead layer at the surface
Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging
We propose differential holography as a method to overcome the long-standing
forward-scattering problem in photoelectron holography and related techniques
for the three-dimensional imaging of atoms. Atomic images reconstructed from
experimental and theoretical Cu 3p holograms from Cu(001) demonstrate that this
method suppresses strong forward-scattering effects so as to yield more
accurate three-dimensional images of side- and back-scattering atoms.Comment: revtex, 4 pages, 2 figure
On-site correlation in valence and core states of ferromagnetic nickel
We present a method which allows to include narrow-band correlation effects
into the description of both valence and core states and we apply it to the
prototypical case of nickel. The results of an ab-initio band calculation are
used as input mean-field eigenstates for the calculation of self-energy
corrections and spectral functions according to a three-body scattering
solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle
spectra show a remarkable agreement with photoemission data in terms of band
width, exchange splitting, satellite energy position of valence states, spin
polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR
Electron correlation effects and magnetic ordering at the Gd(0001) surface
Effects of electron correlation on the electronic structure and magnetic
properties of the Gd(0001) surface are investigated using of the full-potential
linearized augmented plane wave implementation of correlated band theory
("LDA+U"). The use of LDA+U instead of LDA (local density approximation) total
energy calculations produces the correct ferromagnetic ground state for both
bulk Gd and the Gd surface. Surface strain relaxation leads to an 90 %
enhancement of the interlayer surface-to-bulk effective exchange coupling.
Application of a Landau-Ginzburg type theory yields a 30 % enhancement of the
Curie temperature at the surface, in very good agreement with the experiment.Comment: revised version: minor typos correcte
Holographic analysis of diffraction structure factors
We combine the theory of inside-source/inside-detector x-ray fluorescence
holography and Kossel lines/x ray standing waves in kinematic approximation to
directly obtain the phases of the diffraction structure factors. The influence
of Kossel lines and standing waves on holography is also discussed. We obtain
partial phase determination from experimental data obtaining the sign of the
real part of the structure factor for several reciprocal lattice vectors of a
vanadium crystal.Comment: 4 pages, 3 figures, submitte
Bulk Electronic Structure of Lanthanum Hexaboride (LaB6) by Hard X-ray Angle-Resolved Photoelectron Spectroscopy
In the last decade rare-earth hexaborides have been investigated for their
fundamental importance in condensed matter physics, and for their applications
in advanced technological fields. Among these compounds, LaB has a special
place, being a traditional d-band metal without additional f- bands. In this
paper we investigate the bulk electronic structure of LaB using hard x-ray
photoemission spectroscopy, measuring both core-level and angle-resolved
valence-band spectra. By comparing La 3d core level spectra to cluster model
calculations, we identify well-screened peak residing at a lower binding energy
compared to the main poorly-screened peak; the relative intensity between these
peaks depends on how strong the hybridization is between La and B atoms. We
show that the recoil effect, negligible in the soft x-ray regime, becomes
prominent at higher kinetic energies for lighter elements, such as boron, but
is still negligible for heavy elements, such as lanthanum. In addition, we
report the bulk-like band structure of LaB determined by hard x-ray
angle-resolved photoemission spectroscopy (HARPES). We interpret HARPES
experimental results by the free-electron final-state calculations and by the
more precise one-step photoemission theory including matrix element and phonon
excitation effects. In addition, we consider the nature and the magnitude of
phonon excitations in HARPES experimental data measured at different
temperatures and excitation energies. We demonstrate that one step theory of
photoemission and HARPES experiments provide, at present, the only approach
capable of probing true bulk-like electronic band structure of rare-earth
hexaborides and strongly correlated materials.Comment: Total 26 pages, Total 11 figure
Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer
We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn
quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral
Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by
x-ray photoelectron diffraction, low-energy electron diffraction and electron
backscatter diffraction. This overlayer is also characterized by a reduced
density of states near the Fermi edge as expected for quasicrystals. This is
the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn
is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001
Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO embedded in GdTiO
For certain conditions of layer thickness, the interface between GdTiO
(GTO) and SrTiO (STO) in multilayer samples has been found to form a
two-dimensional electron gas (2DEG) with very interesting properties including
high mobilities and ferromagnetism. We have here studied two trilayer samples
of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001)
(LaAlO)(SrAlTaO) (LSAT), with the STO layer
thicknesses being at what has been suggested is the critical thickness for 2DEG
formation. We have studied these with Ti-resonant angle-resolved (ARPES) and
angle-integrated photoemission and find that the spectral feature in the
spectra associated with the 2DEG is present in the 1.5 unit cell sample, but
not in the 1.0 unit cell sample. We also observe through core-level spectra
additional states in Ti and Sr, with the strength of a low-binding-energy state
for Sr being associated with the appearance of the 2DEG, and we suggest it to
have an origin in final-state core-hole screening.Comment: 12 pages, 4 figure
Recommended from our members
Interface properties and built-in potential profile of a LaCr O3/SrTi O3 superlattice determined by standing-wave excited photoemission spectroscopy
LaCrO3(LCO)/SrTiO3(STO) heterojunctions are intriguing due to a polar discontinuity along [001], exhibiting two distinct and controllable charged interface structures [(LaO)+/(TiO2)0 and (SrO)0/(CrO2)-] with induced polarization, and a resulting depth-dependent potential. In this study, we have used soft- and hard-x-ray standing-wave excited photoemission spectroscopy (SW-XPS) to quantitatively determine the elemental depth profile, interface properties, and depth distribution of the polarization-induced built-in potentials. We observe an alternating charged interface configuration: a positively charged (LaO)+/(TiO2)0 intermediate layer at the LCOtop/STObottom interface and a negatively charged (SrO)0/(CrO2)- intermediate layer at the STOtop/LCObottom interface. Using core-level SW data, we have determined the depth distribution of species, including through the interfaces, and these results are in excellent agreement with scanning transmission electron microscopy and electron energy-loss spectroscopy mapping of local structure and composition. SW-XPS also enabled deconvolution of the LCO and STO contributions to the valence-band (VB) spectra. Using a two-step analytical approach involving first SW-induced core-level binding-energy shifts and then VB modeling, the variation in potential across the complete superlattice is determined in detail. This potential is in excellent agreement with density functional theory models, confirming this method as a generally useful tool for interface studies
- …