114 research outputs found

    AMGA: an archive-based micro genetic algorithm for multi-objective optimization

    Get PDF
    In this paper, we propose a new evolutionary algorithm for multi-objective optimization. The proposed algorithm benefits from the existing literature and borrows several concepts from existing multi-objective optimization algorithms. The proposed algorithm employs a new kind of selection procedure which benefits from the search history of the algorithm and attempts to minimize the number of function evaluations required to achieve the desired convergence. The proposed algorithm works with a very small population size and maintains an archive of best and diverse solutions obtained so as to report a large number of non-dominated solutions at the end of the simulation. Improved formulation for some of the existing diversity preservation techniques is also proposed. Certain implementation aspects that facilitate better performance of the algorithm are discussed. Comprehensive benchmarking and comparison of the proposed algorithm with some of the state-of-the-art multi-objective evolutionary algorithms demonstrate the improved search capability of the proposed algorithm

    Energy Based Functional Decomposition in Preliminary Design

    Get PDF
    The authors wish to thank Dr. Jonathan Maier, Dr. Gregory Mocko and Mr. Benjamin Caldwell for their valuable comments on the draft of the paper.This paper presents an energy based approach to functional decomposition that is applicable to the top down design (system to subsystems to components) of mechanical systems. The paper shows that the main functions of convert and transmit are sufficient to focus on the “functional flow” or main energy flow resulting in the specific action sought as a result of the artifact being designed, and can be expanded upon at the lowest level when looking for specific solutions based upon the energy and mass balances and the knowledge within the design team. This approach considers function as a transformation and also fits the approach presented in TRIZ. The standard energy, material, and signal flows are seen as forms of energy flows, and it is only their transformation and transmission that is sought. This simplified approach, coupled with an aspect of control and interaction between a reference state and the artifact or between various components is sufficient to comprehensively describe the system that matches very nicely the value function approach of Miles. Furthermore, as these interactions can be considered as artifactartifact affordances when considering the artifact for either artifact interaction or within an environment, its relation to the user and to the reference state can be addressed during the design phase, in addition to the functions

    Honeycomb Structures for High Shear Flexure

    Get PDF
    The present invention provides an improved shear band for use in non-pneumatic tires, pneumatic tires, and other technologies. The improved shear band is uniquely constructed of honeycomb shaped units that can replace the elastomeric continuum materials such as natural or synthetic rubber or polyurethane that are typically used. In particular, honeycomb structures made of high modulus materials such as metals or polycarbonates are used that provide the desired shear strains and shear modulus when subjected to stress. When used in tire construction, improvements in rolling resistance can be obtained because of less mass being deformed and reduced hysteresis provided by these materials. The resulting mass of the shear band is greatly reduced if using low density materials. Higher density materials can be used (such as metals) without increasing mass while utilizing their characteristic low energy loss

    The Component Packaging Problem: A Vehicle for the Development of Multidisciplinary Design and Analysis Methodologies

    Get PDF
    This report summarizes academic research which has resulted in an increased appreciation for multidisciplinary efforts among our students, colleagues and administrators. It has also generated a number of research ideas that emerged from the interaction between disciplines. Overall, 17 undergraduate students and 16 graduate students benefited directly from the NASA grant: an additional 11 graduate students were impacted and participated without financial support from NASA. The work resulted in 16 theses (with 7 to be completed in the near future), 67 papers or reports mostly published in 8 journals and/or presented at various conferences (a total of 83 papers, presentations and reports published based on NASA inspired or supported work). In addition, the faculty and students presented related work at many meetings, and continuing work has been proposed to NSF, the Army, Industry and other state and federal institutions to continue efforts in the direction of multidisciplinary and recently multi-objective design and analysis. The specific problem addressed is component packing which was solved as a multi-objective problem using iterative genetic algorithms and decomposition. Further testing and refinement of the methodology developed is presently under investigation. Teaming issues research and classes resulted in the publication of a web site, (http://design.eng.clemson.edu/psych4991) which provides pointers and techniques to interested parties. Specific advantages of using iterative genetic algorithms, hurdles faced and resolved, and institutional difficulties associated with multi-discipline teaming are described in some detail

    Energy Based Functional Decomposition in Preliminary Design

    Get PDF
    The authors wish to thank Dr. Jonathan Maier, Dr. Gregory Mocko and Mr. Benjamin Caldwell for their valuable comments on the draft of the paper.This paper presents an energy based approach to functional decomposition that is applicable to the top down design (system to subsystems to components) of mechanical systems. The paper shows that the main functions of convert and transmit are sufficient to focus on the “functional flow” or main energy flow resulting in the specific action sought as a result of the artifact being designed, and can be expanded upon at the lowest level when looking for specific solutions based upon the energy and mass balances and the knowledge within the design team. This approach considers function as a transformation and also fits the approach presented in TRIZ. The standard energy, material, and signal flows are seen as forms of energy flows, and it is only their transformation and transmission that is sought. This simplified approach, coupled with an aspect of control and interaction between a reference state and the artifact or between various components is sufficient to comprehensively describe the system that matches very nicely the value function approach of Miles. Furthermore, as these interactions can be considered as artifactartifact affordances when considering the artifact for either artifact interaction or within an environment, its relation to the user and to the reference state can be addressed during the design phase, in addition to the functions
    corecore