17 research outputs found

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=612z=6-12), and to explore earlier epochs of our Cosmic Dawn (z30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    HI 21cm Cosmology and the Bi-spectrum: Closure Diagnostics in Massively Redundant Interferometric Arrays

    Full text link
    New massively redundant low frequency arrays allow for a novel investigation of closure relations in interferometry. We employ commissioning data from the Hydrogen Epoch of Reionization Array to investigate closure quantities in this densely packed grid array of 14m antennas operating at 100 MHz to 200 MHz. We investigate techniques that utilize closure phase spectra for redundant triads to estimate departures from redundancy for redundant baseline visibilities. We find a median absolute deviation from redundancy in closure phase across the observed frequency range of about 4.5deg. This value translates into a non-redundancy per visibility phase of about 2.6deg, using prototype electronics. The median absolute deviations from redundancy decrease with longer baselines. We show that closure phase spectra can be used to identify ill-behaved antennas in the array, independent of calibration. We investigate the temporal behavior of closure spectra. The Allan variance increases after a one minute stride time, due to passage of the sky through the primary beam of the transit telescope. However, the closure spectra repeat to well within the noise per measurement at corresponding local sidereal times (LST) from day to day. In future papers in this series we will develop the technique of using closure phase spectra in the search for the HI 21cm signal from cosmic reionization.Comment: 32 pages. 11 figures. Accepted to Radio Scienc

    Foreground modelling via Gaussian process regression: an application to HERA data

    Get PDF
    The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an ‘intrinsic’ and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales k ≤ 0.2 h cMpc−1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over k ∼ 0.4–0.8 h cMpc−1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MH

    The 1.28 GHz MeerKAT DEEP2 Image

    Get PDF
    We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one qb » ¢ 68 FWHM primarybeam area with θ = 7 6 FWHM resolution and s = m - n 0.55 0.01 Jy beam 1 rms noise. Its J2000 center position α = 04h 13m 26 4, δ = −80° 00′ 00″ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary-beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u, v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies (SFGs) obeying the far-IR/ radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by SFGs. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson model for the evolution of SFGs based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 log Jy 4 [ ( )] S

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic
    corecore