1,050 research outputs found

    Large-Eddy Simulation of a Turbulent Spray Flame Using the Flamelet Generated Manifold Approach

    Get PDF
    Abstract In order to meet the increasingly stringent regulations in terms of pollutant emissions adopted by ICAO-CAEP in last years, a redesign of aero-engine combustors has been required and, today, lean combustion technology can be considered as the most effective solution. In this context, common design tools and standard RANS predictive techniques are often not capable of properly characterizing combustors performances. Thus, computational techniques have been rapidly evolving towards an extensive use of Large-Eddy Simulation (LES) or hybrid RANS methods. This paper presents the numerical analysis of an experimental partially premixed flame fed by a dilute spray of acetone [1] , exploiting a two-phase Eulerian-Lagrangian approach combined with the Flamelet Generated Manifold (FGM) combustion model in the context of LES techniques. All simulations have been performed with thecode Ansys Fluent 15.0. A comparison both in non-reactive and reactive conditions of the obtained results with experimental data and conventional RANS solution has been realized in order to highlight the LES capabilities to give a new insight into the physics of reactive two-phase flows, particularly on the unsteady evolution of turbulent spray flames involving particles dispersion, evaporation and combustion

    Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Get PDF
    Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52). To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by correlative approach was performed to compare the experimental results with 1D methodologies

    Evans Syndrome in Childhood: Long Term Follow-Up and the Evolution in Primary Immunodeficiency or Rheumatological Disease

    Get PDF
    Evans syndrome (ES) is a rare but challenging condition, characterized by recurrent and refractory cytopenia episodes. Recent discoveries highlighted that an appropriate diagnostic workup is fundamental to identify an underlying immune dysregulation such as primary immunodeficiencies or a rheumatological disease. We hereby describe clinical features and laboratory results of 12 pediatric patients affected by ES referred to the Pediatric Onco-Hematology Unit of Bologna. Patients experienced a median of four acute episodes of cytopenia with 9 years as median age at the onset of symptoms. In 8/12 (67%) patients an underlying etiology, primary immunodeficiencies, or rheumatological disease was identified. In 4/12 children, other immune manifestations were associated (Thyroiditis, Celiac disease, Psoriasis, Vitiligo, Myositis, Membranoproliferative Glomerulonephritis). ES remained the primary diagnosis in four patients (33%). At a median follow-up time of 4 years, 5/12 (42%) patients revealed a chronic ITP, partially responsive to second line therapy. Immunoglobulin Replacement Therapy (IRT) was effective with a good hematological values control in three patients with a secondary ES (ALPS, CVID, and a patient with Rubinstein Taybi Syndrome and a progressive severe B cell deficiency with hypogammaglobulinemia). Our experience highlights that, in pediatric patients, ES is often only the first manifestation of an immunological or rheumatological disease, especially when cytopenias are persistent or resistant to therapy, with an early-onset or when are associated with lymphadenopathy

    Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: Maintenance of differentiated phenotype under defined culture conditions

    Get PDF
    AbstractObjective To establish an immortalized normal human articular chondrocyte line which could be useful for a better understanding of cell molecular mechanisms relevant for the development of new therapeutic approaches in rheumatic diseases.Design Chondrocytes from human adult articular healthy cartilage were transfected in primary culture with a plasmid containing two human papilloma virus type 16 (HPV-16) early function genes: E6 and E7, using the highly efficient cationic liposome-mediated (lipofection) procedure. The transfection was verified by reverse transcriptase-polymerase chain reaction analysis of E7 mRNA and by immunofluorence localization of the E7 protein in the cell cytoplasm. The established chondrocyte cell line was examined in monolayer and in two culture conditions that were described to re-induce differentiated characteristics: culturing in a serum-free defined medium supplemented with an insulin-containing serum substitute and seeding on a hyaluronan-based non-woven structured biomaterial. The expression of markers characteristic of cartilage was shown in the mRNA by reverse transcriptase-polymerase chain reaction. Immunohistological staining and Western blotting analysis were performed to evaluate type II collagen synthesis. Proteoglycans deposition was detected by Alcian Blue staining. A Field Emission In Lens Scanning Microscopy was used to look at the morphology of the immortalized cells at very high magnification.Results Normal human articular chondrocytes were efficiently transfected leading to the establishment of an immortalized cell line as confirmed by HPV-16 E7 mRNA and protein detection. These cells were able to re-express type II collagen both at mRNA and protein levels under the two defined cultured conditions we used, still maintaining type I collagen expression. Collagen IX mRNA was present only in early primary culture while collagen type X and aggrecan transcripts were always detected. Alcian Blue staining showed a proteoglycan-rich matrix production. The ultrastructural analysis of the immortalized cells revealed that their morphology strictly resembled that of normal chondrocytes.Conclusions The cell line that we obtained may be a useful tool for increasing our knowledge of the genetic and biochemical events involved in the processes of cartilage growth and differentiation. Moreover, it appears to be a suitable model for pharmacological and toxicological studies related to rheumatic diseases relevant to humans
    corecore