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ABSTRACT
Vocalizations of the humpback whale Megaptera novaeangliae were investigated using the methods of the
nonlinear time series analysis. Results show that the sound emissions are characterized by a combination of
regular and irregular dynamic behaviors, the latter were characterized in terms of the maximum Lyapunov
exponent and the Kaplan–Yorke dimension, while by the computation of the Lyapunov spectrum, a hyperchaotic
attractor was found.
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1 INTRODUCTION
The discovery of sound emissions from sea living organisms dates back to the pioneering studies of
W.E. Schevill and B. Lawrence on the behavior of a group of beluga whales at the Saguenay River
in Quebec in 1949 [1]. The interest evinced by biologists and zoologists rapidly led to systematic
investigations on the production of sounds from sea living species, allowing for the identification of a
variety of uttering behaviors [2]. Soon, vocalizations were recognized as an exclusive characteristic
of whales, dolphins and porpoises – marine mammals belonging to the Cetacea taxonomic order [3].
The distinctive features of these sound emissions were proven to be strictly dependent on both social
behaviors and environmental conditions [4]. Purposes other than communication, such as echoloca-
tion, were also pointed out by Norris and others [5, 6]. Owing to its unusual types of vocalization,
great attention was devoted to the humpback whale Megaptera novaeangliae (Borowski, 1781), a
mysticete belonging to the family Balaenopteridae which is characterized by highly complex social
behaviors [3]. The name itself stems from the whale’s acrobatic breaches, performed with an arching
of its back, supposed to represent forms of visual and acoustic communication [7]. Unlike other
species, this mysticete does not form stable social groups, but has just occasional brief associations
during the seasonal migrations [8]. Their most interesting hunting strategies are based on underwater
air exhalation the aim of which is to herd the prey at the surface [8]. Both individual and collective
so-called ‘bubble behaviors’are exhibited. In the latter case, large groups of whales, which may num-
ber nearly 20 individuals, dive down up to 30 m near a school of fish and scare the prey in moving
towards the water surface by using a combination of sounds and movements. At the same time, while
circling around the school, whales swim slowly to the surface along spiral paths constantly blowing
bubbles that form a dense net entrapping the concentrated mass of prey and preventing any massive
escape. Then, the individuals lunge up together keeping their mouths open in order to engulf large
quantities of food. Careful observations of these hunting events have demonstrated the high level of
cooperative tactics organization [8]. In the context of the same feeding session, bubble netting and
subsequent emersion are guided by a single individual, generally a female, while the other whales
always keep the same reciprocal disposition. All the movements seem to be coordinated by a continu-
ous sound emission. An intense grumble accompanies bubble netting, while a sudden rise in pitch, the
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so-called ‘ascending phrase’, occurs just before the whales lunge for the surface [8]. The astonishing
connection between sound emission and cooperative hunting has been considered as a valid support
for the hypothesis on the existence of real communications among individuals. However, it represents
just a single episode of vocalization among numerous others whose purpose is still unclear.

Humpback whales indeed produce a number of unusual sounds variously described as moans,
groans, cries, squeaks and so forth [9]. Sounds are sometimes arranged into complex and predictable
patterns classified as ‘songs’. Songs consist of ‘units’, the shortest continuous sound detectable by
human beings making up a ‘phrase’. Phrases are variously repeated to create a ‘theme’ and themes,
in turn, are combined to form a song. A typical song lasts for about from 7–30 min, with themes
and phrases, respectively, from 1 to 3 min and from 20 to 30 s long. Sounds are characterized by
frequencies ranging in the interval between 20 and 9000 Hz and intensity up to 185 dB [9]. Even if
each whale has the capability of vocalizing, quite surprisingly only males are found to sing in the
winter breeding grounds. Such a behavior has been generally related to mating or to forms of territorial
display. Furthermore, the same song is repeated within a limited region and only small changes are
detected during the same season. After the migration to polar feeding grounds and the return to
tropical waters in the winter, songs appear extremely similar to the ones recorded at the end of the
previous winter [8]. In spite of the large amount of research work, no clear explanation of the whole
body of vocalizations has been found. Moreover, owing to the lack of information on the physiology
of the respiratory apparatus during vocalization and the considerable experimental difficulties related
to the behavioral observation in the wild, the dynamics of vocalization is still poorly understood.
Nevertheless, indirect information could be inferred from a detailed study of sound patterns. In
recent studies, nonlinear dynamics analysis was used to characterize vocal emissions of a different
nature [10–13], and, in particular, chaos in other types of animal vocalization was characterized using
the same method proposed here [14]. In this paper we perform a nonlinear time series analysis on the
vocalizations of the Megaptera novaeangliae, looking for the signature of chaotic dynamics.

2 DATA ANALYSIS
Signals corresponding to different sound emissions, including moans, cries, whistles and songs, were
considered. Attention was focused only on clearly discernible sound emissions to avoid any spurious
effect due to echoes or noise. Fast Fourier transforms (512-point FFT) and spectrograms are used
to perform a preliminary analysis looking for noise concentration patterns that are characteristic of
nonlinear phenomena [15].

Nonlinear dynamics analyses were limited to signal units characterized by broadband features
in the frequency domain. The results reported in the present work refer to a signal 10.7 s long,
corresponding to 85,743 points, generally describable as a cry. Analysis methods were performed on
a shorter unit of about 12,000 points, corresponding to a sound duration of 1.49 s. The investigation
of the other signals, whose results are not shown for brevity, gave similar results.

3 NONLINEAR TIME SERIES ANALYSIS METHODS
The time evolution of a system can be properly measured by recording the time series. The time
evolution of a system can be properly measured by recording the time series. The main task of
nonlinear time series analysis is to extract information on the dynamical system starting from the
observation of its evolution. This approach is basically different from the statistical one; it goes over
the limits of the traditional linear and statistical approaches, considering the statistical processes as
a special case of a larger class of phenomena. The analysis of the time series was performed using
the software package TISEAN [16], valued as the most well known and robust algorithm set for
nonlinear time series ana-lysis. Typical steps are attractor reconstruction from the time series and
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the characterization of the chaotic dynamic by means of Lyapunov exponents and the maximum
Lyapunov exponent (MLE).

3.1 Attractor reconstruction

The attractor of the underlying dynamics was reconstructed in phase space by applying the time delay
vector method [15, 17].

Starting from a time series s(t) = [s1, . . . , sN ] the system dynamic can be reconstructed using the
delay theorem by Takens and Mañe. The reconstructed trajectory X can be represented by a matrix
where each row is a phase space vector:

X = [X1, X2, . . . , XM ]T , (1)

where Xi = [si, si+T , . . . , si−(DE−1)T ] and M = N − (DE − 1)T .
The matrix has two key parameters: the embedding dimension DE and the delay time T. The

embedding dimension is the minimum dimension at which the reconstructed attractor can be con-
sidered completely unfolded and no overlapping is present in the reconstructed trajectories. If the
chosen dimension is lower than DE, the attractor is not completely unfolded and the underlying
dynamics cannot be investigated. Higher dimensions are not advisable because of the increase in the
computational effort.

The algorithm used for the computation of DE is the method of false nearest neighbors [18]. A false
neighbor is a point of trajectory intersection in a poorly reconstructed attractor. As the dimension
increases, the attractor is unfolded with greater fidelity, and the number of false neighbors decreases
to zero. The first dimension with no overlapping points is DE.

The delay time T represents a measure of correlation existing between two consecutive components
of DE-dimensional vectors used in the trajectory reconstruction. Following a commonly applied
methodology, the delay time T is chosen in correspondence to the first minimum of the average
mutual information function [19].

3.2 Lyapunov exponents

Chaotic systems display a sensitive dependence on initial conditions. Such a property deeply affects
the time evolution of trajectories starting from infinitesimally close initial conditions, and Lyapunov
exponents are a measure of this dependence. These characteristic exponents give a coordinate
independent measure of the local stability properties of a trajectory. If the trajectory evolves in a
N -dimensional state space, there are N exponents arranged in decreasing order, referred to as the
spectrum of Lyapunov exponents (SLE):

λ1 ≥ λ2 ≥ · · · ≥ λn. (2)

Conceptually, these exponents are generalizations of eigenvalues used to characterize different types
of equilibrium points. A trajectory is chaotic if there is at least one positive exponent, the value
of this exponent, known as the MLE, gives a measure of the divergence rate of infinitesimally
close trajectories and of the unpredictability of the system and gives a good characterization of the
underlying dynamics.

Starting from the reconstructed attractor X, it is possible to compute, using the method of Sano
and Sawada [20, 21], the SLE consisting of exactly n = DE exponents. This method is a qualitative
one, and in the presence of a positive exponent, λ1, a more accurate method is necessary for the
computation.
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The method of Rosenstein et al. [22] is used to compute the MLE from the time series. This method
measures, in the reconstructed attractor, the average divergence of two close trajectories in the time
dj(i). This can be expressed as:

dj(i) = Cje
λ1(i�t), (3)

where Cj is the initial separation. By taking the logarithm of both sides we obtain:

ln dj(i) = ln Cj + λ1(i�t). (4)

This is a set of approximately parallel lines (for j = 1, 2, . . . , M ), each with a slope roughly pro-
portional to λ1. The MLE is easily calculated using a least-squares fit to the average line defined by

y(i) = 1

�t
〈ln dj(i)〉, (5)

where 〈·〉 denotes the average overall values of j. Figure 6 shows a typical plot of 〈ln dj(i)〉: after a
short transition there is a linear region that is used to extract the MLE.

4 RESULTS AND DISCUSSION
The signal is characterized by highly complex patterns in which different transients with both periodic
and apparently aperiodic features can be identified. Figure 1 shows a part of the analyzed time
series. The apparently random behavior of the numerical series, easily detectable by a simple visual
inspection of the sound pattern, was confirmed by the amplitude spectrum reported in Fig. 2 and by
the spectrogram in Fig. 3 whose inspection clearly shows the two main frequencies immersed in a
large area of noise concentration. The false nearest neighbors method [23] provided an embedding
dimension m = 6, while the method of the mutual information [19] suggests a value T = 3 for the
delay time. A three-dimensional projection of a 1000-point long portion of the reconstructed attractor
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Figure 1: The analyzed signal showing the irregular behavior.
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Figure 2: The power spectrum of the analyzed time series.
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Figure 3: Spectrogram of the analyzed time series. The two main frequencies are immersed in a
large noise concentration area, usually related to chaotic or irregular behaviors.
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Figure 4: The three-dimensional projection of the attractor reconstructed using T = 3 and DE = 6.
The structure reveals the deterministic behavior of the signal.

is shown in Fig. 4. It is worth noting that, in spite of the apparent randomness of the vocal emission
signal, the attractor structured qualities suggest an underlying deterministic dynamical evolution.

In order to carefully characterize the nature of vocalization dynamics, the SLE was evaluated.
Average values of Lyapunov exponents are reported in Fig. 5 as a function of the number of steps
forward L [17, 18, 24]. Each point is obtained by following and averaging the behavior of two nearby
trajectories for L steps of the sampling time forward over 3000 initial locations on the attractor.

Owing to the lack of information on the dynamical operator mapping the reconstructed attractor, the
evaluation of the six Lyapunov exponents from the experimental time series requires an approximate
reconstruction of the unknown dynamics. The number of active dynamical degrees of freedom, DE,
corresponding to the number of Lyapunov exponents, was previously evaluated by the application of
the local false nearest neighbors method [18]. The occurrence of two positive Lyapunov exponents
points out the hyperchaotic nature of the vocalization behavior investigated. The Kaplan–Yorke
fractal dimension DL of the attractor [25], equal to DL = 4.11, confirms the high dimensional fractal
qualities of the strange attractor. ‘Chaoticity’ is also confirmed by the measure of the MLE. The value
of 〈 ln dj(i) 〉 is reported in Fig. 6 as a function of the time i�T .

Following the method suggested by Abarbanel, in order to avoid the pitfalls of the exponential
law and then a false chaos detection, the algorithm was applied for different increasing values of the
embedding dimension DE. A false detection occurs when the obtained curves tend to bend down.
Figure 6 clearly shows that the bending is missing. The exponent was computed by performing a
linear regression in the range 30–50 iterations where slopes are constant for different DE values.
Therefore, a set of approximately parallel lines was obtained, each with a slope roughly proportional
to the largest Lyapunov exponent. A value of λ1 = 0.0105 was found (Table 1). The result was
further corroborated by the analysis of a randomized temporal series, which does not present any
linear region. The behavior is instead similar to that obtained from a random series. This result
indirectly confirms the chaotic and deterministic nature of the signal analyzed.
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Figure 5: The average Lyapunov exponents as a function of the number of steps forward L in each
location. The values are reported in units inverse of the sampling time (8050 Hz).
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Figure 6: Results of the computation of the largest Lyapunov exponent. The value λ1 = 0.0105 was
found by performing a linear regression of the curves in the zone 30–50.
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Table 1: Results of the analysis.

Parameter Value

Delay time T 3
Embedding dimension DE 6
Kaplan–Yorke dimension DL 4.11
Maximum Lyapunov exponent λ1 0.0105

5 CONCLUDING REMARKS
In spite of the experimental difficulties due to the presence of noise, echoes and superposition of
vocalizations from different whales, nonlinear dynamics analysis has demonstrated the occurrence
of chaos in the dynamics of sound emission from the humpback whale. Preliminary results seem to
suggest that the vocalizations originate from air circulation inside the respiratory system of the whale.
Unfortunately, any detailed hypothesis on the possible relationships between the observed nonlinear
chaotic behavior of the vocal emission and the related physiological activities of the respiratory
apparatus is restricted by the low degree of knowledge about the latter. Whether or not vocalization
behavior could be classified according to the characteristics of its chaotic dynamics is still the subject
of investigation. Further progress in this direction is expected from a systematic investigation of
vocalizations emitted by whales under different circumstances.
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