8 research outputs found

    Recent Advancements in Plastic Packaging Recycling: A Mini-Review

    Get PDF
    Today, the scientific community is facing crucial challenges in delivering a healthier world for future generations. Among these, the quest for circular and sustainable approaches for plastic recycling is one of the most demanding for several reasons. Indeed, the massive use of plastic materials over the last century has generated large amounts of long-lasting waste, which, for much time, has not been object of adequate recovery and disposal politics. Most of this waste is generated by packaging materials. Nevertheless, in the last decade, a new trend imposed by environmental concerns brought this topic under the magnifying glass, as testified by the increasing number of related publications. Several methods have been proposed for the recycling of polymeric plastic materials based on chemical or mechanical methods. A panorama of the most promising studies related to the recycling of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and polystyrene (PS) is given within this review

    Plastics today: Key challenges and EU strategies towards carbon neutrality: A review

    Get PDF
    Never as today the need for collaborative interactions between industry, the scientific community, NGOs, policy makers and citizens has become crucial for the development of shared political choices and protection of the environment, for the safeguard of future generations. The complex socio-economic and environmental interconnections that underlie the EU strategy of the last years, within the framework of the Agenda 2030 and the green deal, often create perplexity and confusion that make difficult to outline the definition of a common path to achieve carbon neutrality and “net zero emissions” by 2050. Scope of this work is to give a general overview of EU policies, directives, regulations, and laws concerning polymers and plastic manufacturing, aiming to reduce plastic pollution, allowing for a better understanding of the implications that environmental concern and protection may generate from a social-economical point of view

    Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement

    No full text
    Over 50 MioT of Waste Cooking Oil (WCO) was collected worldwide in 2020 from domestic and industrial activities, constituting a potential hazard for both water and land environments, and requiring appropriate disposal management strategies. In line with the principles of circular economy and eco-design, in this paper an innovative methodology for the valorisation of WCO as a rejuvenating agent for bitumen 50/70 coming from Reclaimed Asphalt Pavement (RAP) is reported. In particular, WCO or hydrolysed WCO (HWCO) was modified by transesterification or amidation reactions to achieve various WCO esters and amides. All samples were characterised by nuclear magnetic resonance, melting, and boiling point. Since rejuvenating agents for RAP Cold Mix Asphalt require a melting point ≤0 °C, only WCO esters could further be tested. Efficiency of WCO esters was assessed by means of the Asphaltenes Dispersant Test and the Heithaus Parameter. In particular, bitumen blends containing 25 wt% of WCO modified with 2-phenylethyl alcohol, showed high dispersing capacity in n-heptane even after a week, compared to bitumen alone (1 h). Additionally, the Heithaus Parameter of this bitumen blend was almost three times higher than bitumen alone, further demonstrating beneficial effects deriving from the use of WCO esters as rejuvenating agents

    Synthesis of Helional by Hydrodechlorination Reaction in the Presence of Mono- and Bimetallic Catalysts Supported on Alumina

    Get PDF
    Hydrodechlorination reaction of 3-(benzo-1,3-dioxol-5-yl)-3-chloro-2-methylacrylaldehyde in the presence of different low metal content heterogeneous mono- or bimetallic catalysts was tested for the synthesis of the fragrance Helional® (3-[3,4-methylendioxyphenyl]-2-methyl-propionaldehyde). In particular, mono Pd/Al2O3, Rh/Al2O3 or bimetallic Pd-Cu/Al2O3, Rh-Cu/Al2O3 catalysts were tested in different reaction conditions from which it emerged that mono-Rh/Al2O3 was the best performing catalyst, allowing achievement of 100% substrate conversion and 99% selectivity towards Helional® in 24 h at 80 °C, p(H2) 1.0 MPa in the presence of a base. To establish correlations between atomic structure and catalytic activity, catalysts were characterized by Cu, Rh and Pd K-edge XANES, EXAFS analysis. These characterizations allowed verification that the formation of Pd-Cu alloys and the presence of Cu oxide/hydroxide species on the surface of the Al2O3 support are responsible for the very low catalytic efficiency of bimetallic species tested

    Carbon-dots from sugars and ascorbic acid: Role of the precursors on morphology, properties, toxicity and drug uptake

    No full text
    There is the need for reproducible, simple, high-yielding synthetic protocols aimed at obtaining Carbon Dots (CDs) with controlled surface properties, fluorescence, photothermal and photochemical behavior, biocompatibility, tumor targeting ability, drug absorption biodistribution and tumor uptake. This paper describes a systematic study on the effect of glucose, fructose and ascorbic acid as starting materials for the preparation of highly luminescent CDs, characterized by a blue emission. Their composition and morphology are investigated by titration of OH surface groups, spectroscopic techniques, high-resolution-transmission electron microscopy (HR-TEM) and their toxicity was tested toward HeLa cells. CDs made using fructose were toxic while CDs made from glucose and ascorbic acid showed good biocompatibility. The reproducible and simple synthetic procedure yields luminescent biomass-derived CDs for combined cancer therapy and diagnostics. Their doxorubicin (DOX) drug loading capabilities were measured by spectrofluorimetry indicating a crucial role of the morphologies of the CDs in controlling DOX uptake. The glucose derived CDs showed up to 28 %w/w of DOX loading

    Phosphonium-based tetrakis dibenzoylmethane Eu(III) and Sm(III) complexes: Synthesis, crystal structure and photoluminescence properties in a weakly coordinating phosphonium ionic liquid

    No full text
    Highly luminescent anionic Ln(III) b-diketonate complexes of the formula [P8,8,8,1][Ln(dbm)4], with Ln ¼ Eu3+ and Sm3+, [P8,8,8,1] ¼ trioctylmethylphosphonium and dbm ¼ 1,3-diphenylpropane-1,3-dione were synthesized. The single crystal X-ray structure of the samarium and europium complexes showed that the metal ion was surrounded by four ligands and that no water or solvent molecules were coordinated. The solid complexes showed good thermal stability up to 250 C. The complexes easily dissolved in the ionic liquid trioctylmethylphosphonium bis(trifluoromethylsulfonyl)imide [P8,8,8,1][Tf2N], due to the presence of a common phosphonium countercation in the ionic liquid and in the Eu(III) and Sm(III) complexes. The photoluminescence of the complexes was studied in the solid state and in an ionic liquid as well as in acetonitrile (MeCN) as a solvent.Highly luminescent anionic Ln(III) beta-diketonate complexes of the formula [P-8,P-8,P-8,P-1][Ln(dbm)(4)], with Ln = Eu3+ and Sm3+, [P-8,P-8,P-8,P-1] = trioctylmethylphosphonium and dbm = 1,3-diphenylpropane-1,3-dione were synthesized. The single crystal X-ray structure of the samarium and europium complexes showed that the metal ion was surrounded by four ligands and that no water or solvent molecules were coordinated. The solid complexes showed good thermal stability up to 250 degrees C. The complexes easily dissolved in the ionic liquid trioctylmethylphosphonium bis(trifluoromethylsulfonyl) imide [P-8,P-8,P-8,P-1][Tf2N], due to the presence of a common phosphonium countercation in the ionic liquid and in the Eu(III) and Sm(III) complexes. The photoluminescence of the complexes was studied in the solid state and in an ionic liquid as well as in acetonitrile (MeCN) as a solvent

    Retrospective study 2005-2015 of all cases of fetal death occurred at 6523 gestational weeks, in Friusli Venezia Giulia, Italy

    Get PDF
    Background: Intrauterine fetal death (IUFD) is a tragic event and, despite efforts to reduce rates, its incidence remains difficult to reduce. The objective of the present study was to examine the etiological factors that contribute to the main causes and conditions associated with IUFD, over an 11-year period in a region of North-East Italy (Friuli Venezia Giulia) for which reliable data in available. Methods: Retrospective analysis of all 278 IUFD cases occurred between 2005 and 2015 in pregnancies with gestational age 65 23 weeks. Results: The incidence of IUFD was 2.8\u2030 live births. Of these, 30% were small for gestational age (SGA), with immigrant women being significantly over-represented. The share of SGA reached 35% in cases in which a maternal of fetal pathological condition was present, and dropped to 28% in the absence of associated pathology. In 78 pregnancies (28%) no pathology was recorded that could justify IUFD. Of all IUFDs, 11% occurred during labor, and 72% occurred at a gestational age above 30 weeks. Conclusion: The percentage of IUFD cases for which no possible cause can be identified is quite high. Only the adoption of evidence-based diagnostic protocols, with integrated immunologic, genetic and pathologic examinations, can help reduce this diagnostic gap, contributing to the prevention of future IUFDs
    corecore