3,025 research outputs found

    DNA barcoding: theoretical aspects and practical applications

    Get PDF
    DNA barcoding is a molecular-based identification system, recently introduced in the scientific community. The method is not completely new to science, but the real innovation is not in the discrimination system itself: DNA barcoding can be considered as the core of an integrated taxonomic system, where bioinformatics plays a key role. Time is now ripe for a real collaboration of all the different forces working in taxonomy, towards a “next generation systematics”

    DNA Barcoding for Minor Crops and Food Traceability

    Get PDF
    This outlook paper addresses the problem of the traceability of minor crops. These kinds of cultivations consist in a large number of plants locally distributed with a modest production in terms of cultivated acreage and quantity of final product. Because of globalization, the diffusion of minor crops is increasing due to their benefit for human health or their use as food supplements. Such a phenomenon implies a major risk for species substitution or uncontrolled admixture of manufactured plant products with severe consequences for the health of consumers. The need for a reliable identification system is therefore essential to evaluate the quality and provenance of minor agricultural products. DNA-based techniques can help in achieving this mission. In particular, the DNA barcoding approach has gained a role of primary importance thanks to its universality and versatility. Here, we present the advantages in the use of DNA barcoding for the characterization and traceability of minor crops based on our previous or ongoing studies at the ZooPlantLab (Milan, Italy). We also discuss how DNA barcoding may potentially be transferred from the laboratory to the food supply chain, from field to table

    Causality estimates among brain cortical areas by Partial Directed Coherence: simulations and application to real data

    Get PDF
    The problem of the definition and evaluation of brain connectivity has become a central one in neuroscience during the latest years, as a way to understand the organization and interaction of cortical areas during the execution of cognitive or motor tasks. Among various methods established during the years, the Partial Directed Coherence (PDC) is a frequency-domain approach to this problem, based on a multivariate autoregressive modeling of time series and on the concept of Granger causality. In this paper we propose the use of the PDC method on cortical signals estimated from high resolution EEG recordings, a non invasive method which exhibits a higher spatial resolution than conventional cerebral electromagnetic measures. The principle contributions of this work are the results of a simulation study, testing the performances of PDC, and a statistical analysis (via the ANOVA, analysis of variance) of the influence of different levels of Signal to Noise Ratio and temporal length, as they have been systematically imposed on simulated signals. An application to high resolution EEG recordings during a foot movement is also presented

    Surgical clip closure of the left atrial appendage

    Get PDF
    Atrial fibrillation (AF) is the most common atrial arrhythmia, but it is not a benign disease. AF is an important risk factor for thromboembolic events, causing significant morbidity and mortality. The left atrial appendage (LAA) plays an important role in thrombus formation, but the ideal management of the LAA remains a topic of debate. The increasing popularity of surgical epicardial ablation and hybrid endoepicardial ablation approaches, especially in patients with a more advanced diseased substrate, has increased interest in epicardial LAA management. Minimally invasive treatment options for the LAA offer a unique opportunity to close the LAA with a clip device. This review highlights morphologic, electrophysiologic, and surgical aspects of the LAA with regard to AF surgery, and aims to illustrate the importance of surgical clip closure of the LAA

    Laser irradiated foam targets: absorption and radiative properties

    Get PDF
    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminium targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target

    Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review

    Get PDF
    Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production. The release of SMX into the environment can lead to the development of antibiotic resistance among the microbial community, which can lead to frequent clinical infections. SMX removal from water is usually done through advanced treatment processes, such as adsorption, photocatalytic oxidation, and biodegradation. Among them, the advanced oxidation process using TiO2 and its composites is being widely used. TiO2 is a widely used photocatalyst; however, it has certain limitations, such as low visible light response and quick recombination of e/h+ pairs. Integrating the biochar with TiO2 nanoparticles can overcome such limitations. The biocharsupported TiO2 composites showed a significant increase in the photocatalytic activities in the UVvisible range, which resulted in a substantial increase in the degradation of SMX in water. The present review has critically reviewed the methods of biochar TiO2 composite synthesis, the effect of biochar integration with the TiO2 on its physicochemical properties, and the chemical pathways through which the biochar/TiO2 composite degrades the SMX in water or aqueous solution. The degradation of SMX using photocatalysis can be considered a useful model, and the research studies presented in this review will allow extending this area of research on other types of similar pharmaceuticals or pollutants in general in the future

    Neuroelectrical Hyperscanning Measures Simultaneous Brain Activity in Humans

    Get PDF
    In this study we illustrate a methodology able to follow and study concurrent and simultaneous brain processes during cooperation between individuals, with non invasive EEG methodologies. We collected data from fourteen pairs of subjects while they were playing a card game with EEG. Data collection was made simultaneously on all the subjects during the card game. An extension of the Granger-causality approach allows us to estimate the functional connection between signals estimated from different Regions of Interest (ROIs) in different brains during the analyzed task. Finally, with the use of graph theory, we contrast the functional connectivity patterns of the two players belonging to the same team. Statistically significant functional connectivities were obtained from signals estimated in the ROIs modeling the anterior cingulate cortex (ACC) and the prefrontal areas described by the Brodmann areas 8 with the signals estimated in all the other modelled cortical areas. Results presented suggested the existence of Granger-sense causal relations between the EEG activity estimated in the prefrontal areas 8 and 9/46 of one player with the EEG activity estimated in the ACC of their companion. We illustrated the feasibility of functional connectivity methodology on the EEG hyperscannings performed on a group of subjects. These functional connectivity estimated from the couple of brains could suggest, in statistical and mathematical terms, the modelled cortical areas that are correlated in Granger-sense during the solution of a particular task. EEG hyperscannings could be used to investigate experimental paradigms where the knowledge of the simultaneous interactions between the subjects have a value

    Diagnostic Methodologies of Laser-Initiated 11B(p,α)2α Fusion Reactions

    Get PDF
    The detection of the ionic products of low-rate fusion reactions, and in particular of the 11B(p,α)2α, is one of the recognized main problems in experiments where these reactions are initiated by tailored interaction of intense and high-energy lasers with matter. A thorough description of this important issue, with a critical comparison of the diagnostic opportunities, is indeed so far. In this work, we describe the common diagnostic methodologies used for the detection of the alpha particles generated by the 11B(p,α)2α reaction and, for each, we outline advantages and limitations, with considerations that can also be applied to other low-rate fusion reactions. We show here that, in general, the univocal characterization of the α products coming from this reaction can be achieved by the simultaneous use of several diagnostic tools placed in close proximity
    • …
    corecore