44 research outputs found

    Study of 222−220Rn Measurement Systems Based on Electrostatic Collection by Using Geant4+COMSOL Simulation

    Get PDF
    Using Monte Carlo (with Geant4) and COMSOL simulations, the authors have defined a useful tool to reproduce the alpha spectroscopy of 222Rn, 220Rn and their ionized daughters by measurement systems based on electrostatic collection on a silicon detector, inside a metallic chamber. Several applications have been performed: (i) simulating commercial devices worldwide used, and comparing them with experimental theoretical results; (ii) studying of realization of new measurement systems through investigation of the detection efficiency versus different chamber geometries. New considerations and steps forward have been drawn. The present work is a novelty in the literature concerning this research framework

    Implementation of dose calculation methods for NORM by-products in building materials in the circular economy framework

    Get PDF
    Introduction: Risk assessment of exposure to indoor pollutants plays an increasingly important role in human protection, and one of the main sources of indoor pollutants is building materials (BMs). In addition, production processes, including those related to BMs, are also involved in economic transition: the use of by-products from other industrial sectors as raw materials for the production processes in compliance with environmental sustainability is evaluated.Methods: In this work, we evaluate not only the radiation protection of BMs but also the possibility of adopting the circular economy principles. The two main objectives of this study were 1) radiometric characterization and calculation of Index I of pozzolan from Altavilla Irpina (Avellino) in Italy, used as a natural igneous additive for concrete, using gamma spectroscopy, and 2) comparison of different methodologies for calculating the annual effective dose of BMs (CEN/TR 17113:2017, RESRAD-BUILD software, and a previously developed experimental method). The same approach was extended to the possibility of reusing fly ash—a naturally occurring radioactive material (NORM) by-product of coal combustion in thermal power plants—for the production of concrete.Results and Discussion: The study aligns with the principles linked to the circular economy to extend the life cycle of materials by reducing the need for natural resources, suggesting a possible positive compromise between radioprotection and preservation of environmental heritage

    Study of Surface Emissions of 220Rn (Thoron) at Two Sites in the Campi Flegrei Caldera (Italy) during Volcanic Unrest in the Period 2011–2017

    Get PDF
    The study concerns the analysis of 220Rn (thoron) recorded in the surface soil in two sites of the Campi Flegrei caldera (Naples, Southern Italy) characterized by phases of volcanic unrest in the seven-year period 1 July 2011–31 December 2017. Thoron comes only from the most surface layer, so the characteristics of its time series are strictly connected to the shallow phenomena, which can also act at a distance from the measuring point in these particular areas. Since we measured 220Rn in parallel with 222Rn (radon), we found that by using the same analysis applied to radon, we obtained interesting information. While knowing the limits of this radioisotope well, we highlight only the particular characteristics of the emissions of thoron in the surface soil. Here, we show that it also shows some clear features found in the radon signal, such as anomalies and signal trends. Consequently, we provide good evidence that, in spite of the very short life of 220Rn compared to 222Rn, both are related to the carrier effect of CO2, which has significantly increased in the last few years within the caldera. The hydrothermal alterations, induced by the increase in temperature and pressure of the caldera system, occur in the surface soils and significantly influence thoron's power of exhalation from the surface layer. The effects on the surface thoron are reflected in both sites, but with less intensity, the same behavior of 222Rn following the increasing movements and fluctuations of the geophysical and geochemical parameters (CO2 flux, fumarolic tremor, background seismicity, soil deformation). An overall linear correlation was found between the 222−220Rn signals, indicating the effect of the CO2 vector. The overall results represent a significant step forward in the use and interpretation of the thoron signal

    Optical pulsations from a transitional millisecond pulsar

    Get PDF
    Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is still strong enough to channel the accreting matter towards the magnetic poles. When mass transfer is much reduced or ceases altogether, pulsed emission generated by particle acceleration in the magnetosphere and powered by the rotation of the neutron star is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally-powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified. Here we report the detection of optical pulsations from a transitional pulsar, the first ever from a millisecond spinning neutron star. The pulsations were observed when the pulsar was surrounded by an accretion disk and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere seems more likely.Comment: 32 pages, 7 figures. The first two authors contributed equally to this wor

    Radon in dead-end caves in Europe

    Get PDF
    We report the results of 3-years of Radon-222 monitoring in six show caves across Europe, selected with the feature of having only one, or no natural entrance, defined as dead-end caves. The caves are located in Spain, Slovakia, Slovenia, and Czechia. The consecutive monitoring was performed between January 2017 and January 2020. Continuous measurements of the radon activity concentration using spectrometry detection and analysis of the α-particles of 222Rn progeny were performed. Meteorological parameters influencing gas flow were recorded inside and outside of the caves. Although the radon activity concentrations differed from one cave to another, all six of the studied caves revealed very similar trends, showing evident seasonal variability with higher values in summer and lower values in winter. The measured values of radon activity concentrations ranged between 633 and 26,785 Bq/m3. The temperature differences between the inside and outside of the caves is the main radon movements driving force. The results of this study have significant practical implications, making it possible to provide cave administrators with recommendations regarding employee or visitor time-limited access to the investigated caves. Ours is the first comparative study encompassing the most interesting dead-end caves in Europe.The authors would like to express thanks to the involved caves Administrations for the support provided during the investigation. Our work was also supported by: the Centre of Advanced Applied Sciences [CZ.02.1.01/0.0/0.0/16–019/0000778], the CzechGeo-EPOS project ‘Distributed system of permanent observatory measurements and temporary monitoring of geophysical fields in the Czech Republic’ [CZ.02.1.01/0.0/0.0/16_013/0001800], the Long-term Conceptual Development Research Organization [RVO: 67985891], the Spanish Ministry of Science, Innovation, and Universities [grant number RTI2018-099052-B-I00], the Regional Government of Comunidad Valenciana (Spain) [grant number AICO/2020/175], the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic (VEGA project no. 2/0083/18 and 2/0015/21)

    Comparative Safety of Originator and Biosimilar Epoetin Alfa Drugs: An Observational Prospective Multicenter Study

    Get PDF
    Background: Erythropoiesis-stimulating agents (ESAs) are biological molecules approved for the treatment of anemia associated with chronic renal failure. Biosimilars were licensed for use in Europe in 2007. Aim: This study aimed to compare the safety profile of biosimilars with respect to the reference product in a nephrology setting. Methods: A prospective study was conducted in four Italian regions between 1 October 2013 and 30 June 2015. The study population included patients aged 65 18 years undergoing hemodialysis and treated with epoetins as per the clinical practice of the participating centers. The two comparison cohorts included patients treated with either an originator or a biosimilar epoetin alfa. Each patient was followed up until occurrence of any safety outcome of interest (grouped into three major categories), switch to a different ESA product, transplant or peritoneal dialysis, death, or end of the study period, whichever came first. Results: Overall, 867 subjects were included in the study (originator: N = 423; biosimilar: N = 444). Biosimilar users were older than originator users (median age of 76 vs 64 years, respectively), more frequently affected by arrhythmia (29.3 vs 22.5%), and less frequently candidates for transplantation (3.8 vs 18.2%). Cox-regression analysis showed no increase in risk of safety outcomes in biosimilar users, even after adjusting for confounding factors: 1.0 (95% confidence interval [CI] 0.7\u20131.3) for any outcomes; 1.1 (95% CI 0.7\u20131.8) for problems related to dialysis device; 0.9 (95% CI 0.6\u20131.5) for cardio- and cerebro-vascular conditions; 0.9 (95% CI 0.6\u20131.5) for infections. Conclusion: This study confirms the comparable safety profiles of originator and biosimilar epoetin alfa drugs when used in patients receiving dialysis

    First detection of X-ray polarization from the accreting neutron star 4U 1820-303

    Get PDF
    This paper reports the first detection of polarization in the X-rays for atoll-source 4U 1820-303, obtained with the Imaging X-ray Polarimetry Explorer (IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements were also performed in the radio with the Australia Telescope Compact Array (ATCA). The IXPE observations of 4U 1820-303 were coordinated with Swift-XRT, NICER, and NuSTAR aiming to obtain an accurate X-ray spectral model covering a broad energy interval. The source shows a significant polarization above 4 keV, with a polarization degree of 2.0(0.5)% and a polarization angle of -55(7) deg in the 4-7 keV energy range, and a polarization degree of 10(2)% and a polarization angle of -67(7) deg in the 7-8 keV energy bin. This polarization also shows a clear energy trend with polarization degree increasing with energy and a hint for a position-angle change of about 90 deg at 96% CL around 4 keV. The spectro-polarimetric fit indicates that the accretion disk is polarized orthogonally to the hard spectral component, which is presumably produced in the boundary/spreading layer. We do not detect linear polarization from the radio counterpart, with a 99.97% upper limit of 50% at 7.25 GHz

    Review of Kaon Physics at CERN and in Europe

    Get PDF
    The Kaon physics program at CERN and in Europe will be presented. I will first give a short review of recent results form the NA48/2 and NA62 experiments, with special emphasis to the measurement of RK , the ratio of Kaon leptonic decays rates, K → eν and K → μν, using the full minimum bias data sample collected in 2007-2008. The main subject of the talk will be the study of the highly suppressed decay K → πνν. While its rate can be predicted with minimal theoretical uncertainty in the Standard Model (BR ∼ 8 × 10−11), the smallness of BR and the challenging experimental signature make it very difficult to measure. The branching ratio for this decay is thus a sensitive probe of the flavour sector of the SM. The aim of NA62 is the measurement of the K → πνν BR with ∼ 10% precision in two years of data taking. This will require the observation of 10K decays in the experiment's fiducial volume, as well as the use of high-performance systems for precision tracking, particle identification, and photon vetoing. These aspects of the experiment will also allow NA62 to carry out a rich program of searches for lepton flavour and/or number violating K decays. Data taking will start in October 2014. The physics prospects and the status of the construction and commissioning of the NA62 experiment will be presented. In the last part of the talk I will report on Kaon physics results and prospects from other experiments at CERN (e.g. LHCb) and in Europe (e.g. KLOE and KLOE-2) and briefly mention the status in US

    Study on a peak shape fitting model for the analysis of alpha-particle spectra

    No full text
    In this study it is developed a model for the detailed and automatic study of the alpha-particle spectra coming from detection systems. The fitting of a typical shape of the alpha peak is performed by a Gaussian function for the right side of the peak and a sum of two Gaussian functions for its left tail. The model takes into account the entire spectrum background and, particular attention is posed to the analysis of overlapped peaks, background noise and peaks with low statistic counting. The effectiveness of the proposed model is supported by several tests
    corecore