55 research outputs found

    206 The time course of new T-wave ECG descriptors following single and double dose administration of Sotalol in healthy subjects

    Get PDF
    IntroductionThe aim of the study was to assess the time course effect of IKr blockade on ECG biomarkers of ventricular repolarization and to evaluate the accuracy of a fully automatic approach for QT duration evaluation.Methods12-lead digital ECG Holter were recorded in 38 healthy subjects (27 males, mean age=27.4±8.0 years) on baseline conditions (day 0) and after administration of 160 mg (day 1) and 320 mg (day 2) of d-l Sotalol. For each 24-hour period and each subject, ECGs were extracted every 10 minutes during the 4-hour period following drug dosage. Ventricular repolarization was characterized using 3 biomarker categories: conventional ECG time intervals, Principal Component Analysis (PCA) analysis on the T-wave, and fully automatic biomarkers computed from a mathematical model of the T-wave.ResultsQT interval was significantly prolonged starting 1h20 minutes after drug dosing with 160 mg and 1h 10 minutes after drug dosing with 320 mg. PCA ventricular repolarization parameters sotalol-induced changes were delayed (>3 hours). After sotalol dosing, the early phase of the T-wave changed earlier than the late phase prolongation. Globally, the modeled surrogate QT paralleled manual QT changes.The duration of manual QT and automatic surrogate QT were strongly correlated (R2=0.92, p<0.001). The Bland & Altman plot revealed a non-stationary systematic bias (bias =26.5ms ±1.96*SD = 16ms).ConclusionsChanges in different ECG biomarkers of ventricular repolarization display different kinetics after administration of a potent potassium channel blocker. These differences need to be taken into account when designing ventricular repolarization ECG studies

    Influence of blood glucose on heart rate and cardiac autonomic function. The DESIR study.

    Get PDF
    International audienceOBJECTIVES:   To evaluate in a general population, the relationships between dysglycaemia, insulin resistance and metabolic variables, and heart rate, heart rate recovery and heart rate variability. METHODS:   Four hundred and forty-seven participants in the Data from an Epidemiological Study on the Insulin Resistance syndrome (DESIR) study were classified according to glycaemic status over the preceding 9 years. All were free of self-reported cardiac antecedents and were not taking drugs which alter heart rate. During five consecutive periods: rest, deep breathing, recovery, rest and lying to standing, heart rate and heart rate varability were evaluated and compared by ANCOVA and trend tests across glycaemic classes. Spearman correlation coefficients quantified the relations between cardio-metabolic risk factors, heart rate and heart rate varability. RESULTS:   Heart rate differed between glycaemic groups, except during deep breathing. Between rest and deep-breathing periods, patients with diabetes had a lower increase in heart rate than others (P(trend) < 0.01); between deep breathing and recovery, the heart rate of patients with diabetes continued to increase, for others, heart rate decreased (P(trend) < 0.009). Heart rate was correlated with capillary glucose and triglycerides during the five test periods. Heart rate variability differed according to glycaemic status, especially during the recovery period. After age, sex and BMI adjustment, heart rate variability was correlated with triglycerides at two test periods. Change in heart rate between recovery and deep breathing was negatively correlated with heart rate variability at rest, (r=-0.113, P < 0.05): lower resting heart rate variability was associated with heart rate acceleration. CONCLUSIONS:   Heart rate, but not heart rate variability, was associated with glycaemic status and capillary glucose. After deep breathing, heart rate recovery was altered in patients with known diabetes and was associated with reduced heart rate variability. Being overweight was a major correlate of heart rate variability

    Intracardiac electrophysiology to characterize susceptibility to ventricular arrhythmias in murine models

    Get PDF
    Introduction: Sudden cardiac death (SCD) and ventricular fibrillation are rare but severe complications of many cardiovascular diseases and represent a major health issue worldwide. Although the primary causes are often acute or chronic coronary diseases, genetic conditions, such as inherited channelopathies or non-ischemic cardiomyopathies are leading causes of SCD among the young. However, relevant experimental models to study the underlying mechanisms of arrhythmias and develop new therapies are still needed. The number of genetically engineered mouse models with cardiac phenotype is growing, making electrophysiological studies in mice essential tools to study arrhythmogenicity and arrhythmia mechanisms and to test novel treatments. Recently, intracardiac catheterization via the jugular vein was described to induce and record ventricular arrhythmias in living anesthetized mice. Several strategies have been reported, developed in healthy wild-type animals and based on aggressive right ventricular stimulation.Methods: Here, we report a protocol based on programmed electrical stimulation (PES) performed in clinical practice in patients with cardiac rhythm disorders, adapted to two transgenic mice models of arrhythmia - Brugada syndrome and cardiolaminopathy.Results: We show that this progressive protocol, based on a limited number of right ventricular extrastimuli, enables to reveal different rhythmic phenotypes between control and diseased mice. In this study, we provide detailed information on PES in mice, including catheter positioning, stimulation protocols, intracardiac and surface ECG interpretation and we reveal a higher susceptibility of two mouse lines to experience triggered ventricular arrhythmias, when compared to control mice.Discussion: Overall, this technique allows to characterize arrhythmias and provides results in phenotyping 2 arrhythmogenic-disease murine models

    Short QT syndrome. Update on a recent entity

    Get PDF
    SummaryThe short QT syndrome, a recently discovered ion channel disorder, combines shortened repolarization, a predisposition to atrial and ventricular fibrillatory arrhythmias, and a risk of sudden death. Few cases have been reported, but the prevalence may be underestimated. This syndrome might account for some cases of unexplained ventricular fibrillation in patients with otherwise healthy hearts. Patients have abnormally short QT intervals and refractory periods, and atrial/ventricular fibrillation can be triggered during investigations. Gain-of-function mutations have been detected in three genes encoding potassium channels. Treatment is based on defibrillator implantation, sometimes as a preventive measure. Quinidine may be beneficial in certain cases

    Comparison of automated interval measurements by widely used algorithms in digital electrocardiographs

    Get PDF
    Background: Automated measurements of electrocardiographic (ECG) intervals by current-generation digital electrocardiographs are critical to computer-based ECG diagnostic statements, to serial comparison of ECGs, and to epidemiological studies of ECG findings in populations. A previous study demonstrated generally small but often significant systematic differences among 4 algorithms widely used for automated ECG in the United States and that measurement differences could be related to the degree of abnormality of the underlying tracing. Since that publication, some algorithms have been adjusted, whereas other large manufacturers of automated ECGs have asked to participate in an extension of this comparison. Methods: Seven widely used automated algorithms for computer-based interpretation participated in this blinded study of 800 digitized ECGs provided by the Cardiac Safety Research Consortium. All tracings were different from the study of 4 algorithms reported in 2014, and the selected population was heavily weighted toward groups with known effects on the QT interval: included were 200 normal subjects, 200 normal subjects receiving moxifloxacin as part of an active control arm of thorough QT studies, 200 subjects with genetically proved long QT syndrome type 1 (LQT1), and 200 subjects with genetically proved long QT syndrome Type 2 (LQT2). Results: For the entire population of 800 subjects, pairwise differences between algorithms for each mean interval value were clinically small, even where statistically significant, ranging from 0.2 to 3.6 milliseconds for the PR interval, 0.1 to 8.1 milliseconds for QRS duration, and 0.1 to 9.3 milliseconds for QT interval. The mean value of all paired differences among algorithms was higher in the long QT groups than in normals for both QRS duration and QT intervals. Differences in mean QRS duration ranged from 0.2 to 13.3 milliseconds in the LQT1 subjects and from 0.2 to 11.0 milliseconds in the LQT2 subjects. Differences in measured QT duration (not corrected for heart rate) ranged from 0.2 to 10.5 milliseconds in the LQT1 subjects and from 0.9 to 12.8 milliseconds in the LQT2 subjects. Conclusions: Among current-generation computer-based electrocardiographs, clinically small but statistically significant differences exist between ECG interval measurements by individual algorithms. Measurement differences between algorithms for QRS duration and for QT interval are larger in long QT interval subjects than in normal subjects. Comparisons of population study norms should be aware of small systematic differences in interval measurements due to different algorithm methodologies, within-individual interval measurement comparisons should use comparable methods, and further attempts to harmonize interval measurement methodologies are warranted

    An International Multicenter Cohort Study on beta-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Background: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. β-Blockers decrease this risk, but studies comparing individual β-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of β-blocker in a large cohort of symptomatic children with CPVT.Methods: From 2 international registries of patients with CPVT, RYR2 variant–carrying symptomatic children (defined as syncope or sudden cardiac arrest before β-blocker initiation and age at start of β-blocker therapy &lt;18 years), treated with a β-blocker were included. Cox regression analyses with time-dependent covariates for β-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope.Results: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7–15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8–12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective β-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a β1-selective β-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial β-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for β1-selective compared with nonselective β-blockers (HR, 2.04 [95% CI, 1.31–3.17]; and HR, 1.99 [95% CI, 1.20–3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44–4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47–7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08–4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30–5.55]).Conclusions: β1-selective β-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective β-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred β-blocker for treating symptomatic children with CPVT.</p

    Atrial Fibrillation Screening: The Tools Are Ready, But Should We Do It?

    No full text
    International audienceNo abstract availabl

    The safety profile of favipiravir should not be the first argument to suspend its evaluation in viral hemorrhagic fevers

    No full text
    International audienceNo abstract availabl

    QT interval and arrhythmic risk assessment after myocardial infarction

    No full text
    International audienceTo assess ventricular repolarization features as predictors of ventricular tachyarrhythmias (VT) in patients with previous myocardial infarction, we performed a dynamic study of QT interval from 24-hour electrocardiographic data. QT rate dependence was enhanced in patients with VT when compared with patients without VT
    corecore