125 research outputs found

    Muscle stem cells remain viable and keep their functionality many days after death

    Get PDF
    DerniĂšrement, nous avons montrĂ© que les cellules souches du muscle (cellules satellites), tout comme les cellules souches hĂ©matopoĂŻĂ©tiques, survivent trĂšs longtemps dans les tissus aprĂšs la mort chez l’homme et la souris. Ces cellules restent fonctionnelles et capables de se diffĂ©rencier in vitro et in vivo. Nous avons modĂ©lisĂ© in vitro l’absence d’oxygĂšne (anoxie), trĂšs vite observĂ©e dans les tissus aprĂšs la mort et mis en Ă©vidence que, de façon surprenante, les cellules satellites du muscle rĂ©sistent Ă  des sĂ©jours prolongĂ©s en anoxie et plus longtemps que lorsque les cellules sont entourĂ©es d’oxygĂšne ambiant (normoxie). Cette caractĂ©ristique, propre aux cellules souches, dĂ©clenche une rĂ©ponse de ces cellules qui induit un Ă©tat de quiescence plus profond que nous avons dĂ©crit et qualifiĂ© de « dormance cellulaire ». Ces travaux montrent la possibilitĂ© d’utiliser les tissus post mortem comme source de cellules souches pour leur Ă©tude ou la thĂ©rapeutique.Recently, we showed that muscle stem cells, but also hematopoietic stem cells, survive for a very long time after death in human and mice tissues. These cells remain functional and capable of regeneration in vitro and in vivo. We modelled in vitro the absence of oxygen, very quickly observed in tissues after death and highlighted that muscle stem cells, surprisingly, survive for an extended period of time in the absence of oxygen, (anoxia), and longer than in the presence of ambient oxygen levels (normoxia). This characteristic is specific to stem cells and not to other cell types. This lack of oxygen induces a state of deeper quiescence than previously described and that we qualified as “dormancy”. This work shows the possibility of using post-mortem tissues as a source of stem cells for their study or for therapeutics

    Hyperglycaemia and apoptosis of microglial cells in human septic shock

    Get PDF
    International audienceIntroductionThe effect of hyperglycaemia on the brain cells of septic shock patients is unknown. The objective of this study was to evaluate the relationship between hyperglycaemia and apoptosis in the brains of septic shock patients.MethodsIn a prospective study of 17 patients who died from septic shock, hippocampal tissue was assessed for neuronal ischaemia, neuronal and microglial apoptosis, neuronal Glucose Transporter (GLUT) 4, endothelial inducible Nitric Oxide Synthase (iNOS), microglial GLUT5 expression, microglial and astrocyte activation. Blood glucose (BG) was recorded five times a day from ICU admission to death. Hyperglycaemia was defined as a BG 200 mg/dL g/l and the area under the BG curve (AUBGC) > 2 g/l was assessed.ResultsMedian BG over ICU stay was 2.2 g/l. Neuronal apoptosis was correlated with endothelial iNOS expression (rho = 0.68, P = 0.04), while microglial apoptosis was associated with AUBGC > 2 g/l (rho = 0.70; P = 0.002). Neuronal and microglial apoptosis correlated with each other (rho = 0.69, P = 0.006), but neither correlated with the duration of septic shock, nor with GLUT4 and 5 expression. Neuronal apoptosis and ischaemia tended to correlate with duration of hypotension.ConclusionsIn patients with septic shock, neuronal apoptosis is rather associated with iNOS expression and microglial apoptosis with hyperglycaemia, possibly because GLUT5 is not downregulated. These data provide a mechanistic basis for understanding the neuroprotective effects of glycemic control

    A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/ÎČR+/−) or totally (IFN-α/ÎČR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates

    Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    Get PDF
    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 ”m. Cell enlargement was observed in vivo, producing cells up to 100 ”m. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection

    From septicemia to sepsis 3.0—from Ignaz Semmelweis to Louis Pasteur

    No full text
    International audienceSepsis remains a contemporary threat, and its frequency remains high amongst an aging population. Its definition has been regularly revisited, but the impact of the translational research studying it remains very modest compared to the results seen after the introduction of hygiene and the use of antibiotics. In the past, the main forms of sepsis were hospital gangrene (also known as nosocomial fever or putrid fever) that affected the wounded, and puerperal fever that affected women shortly after delivery. In 1858, Armand Trousseau stated that these two pathologies were identical. Lucrezia Borgia, who died in 1519, is undoubtedly the most famous woman to die from puerperal fever. The notion of sepsis as a real epidemic was deplored. For decades doctors remained deaf to the recommendations of their clairvoyant colleagues who advocated for the use of hygienic measures. It was as early as 1795 that Alexander Gordon (UK) and later in 1843, Oliver Holmes (USA), called for the use of hygienic practices. In 1847, Ignaz Semmelweis, a Hungarian physician, provided an irrefutable demonstration of the importance of hygiene in the prevention of contamination by the hands of the practitioners. But Ignaz Semmelweis' life was a tragedy, his fight against the medical nomenklatura was a tragedy, and his death was a tragedy! Nowadays, Ignaz Semmelweis is receiving the honor that he deserves, but never received during his life. Carl Mayrhofer, Victor Feltz, and LĂ©on Coze were the first to associate the presence of bacteria with sepsis. These observations were confirmed by Louis Pasteur who, thanks to his prestige, had a great influence on how to undertake measures to prevent infections. He inspired Joseph Lister who reduced mortality associated with surgery, particularly amputation, by utilizing antiseptic methods
    • 

    corecore