10 research outputs found

    Post-harvest conservation of Passiflora alata fruits under ambient and refrigerated condition.

    Get PDF
    We use velocity dispersion measurements of 21 individual cluster members in the core of Abell 383, obtained with Multiple Mirror Telescope Hectospec, to separate the galaxy and the smooth dark halo (DH) lensing contributions. While lensing usually constrains the overall, projected mass density, the innovative use of velocity dispersion measurements as a proxy for masses of individual cluster members breaks inherent degeneracies and allows us to (a) refine the constraints on single galaxy masses and on the galaxy mass-to-light scaling relation and, as a result, (b) refine the constraints on the DM-only map, a high-end goal of lens modelling. The knowledge of cluster member velocity dispersions improves the fit by 17 per cent in terms of the image reproduction χ2, or 20 per cent in terms of the rms. The constraints on the mass parameters improve by ˜10 per cent for the DH, while for the galaxy component, they are refined correspondingly by ˜50 per cent, including the galaxy halo truncation radius. For an L* galaxy with M^{*}B=-20.96, for example, we obtain best-fitting truncation radius r_tr^{*}=20.5^{+9.6}_{-6.7} kpc and velocity dispersion σ* = 324 ± 17 km s-1. Moreover, by performing the surface brightness reconstruction of the southern giant arc, we improve the constraints on rtr of two nearby cluster members, which have measured velocity dispersions, by more than ˜30 per cent. We estimate the stripped mass for these two galaxies, getting results that are consistent with numerical simulations. In the future, we plan to apply this analysis to other galaxy clusters for which velocity dispersions of member galaxies are available

    UBVRI Light curves of 44 Type Ia supernovae

    Get PDF
    We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∌40% intrinsic scatter compared to the B band

    X-Ray Observations of Cluster Mergers

    No full text
    X-ray observations have played a key role in the study of substructure and merging in galaxy clusters. I review the evidence for cluster substructure and mergers obtained from X-ray observations with satellites that operated before Chandra and XMM. Different techniques to study cluster mergers via X-ray imaging and spectral data are discussed with an emphasis on the quantitative analysis of cluster morphologies. I discuss the implications of measurements of cluster morphologies for cosmology and the origin of radio halos

    Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents

    No full text

    Animal models for the atherosclerosis research: a review

    No full text

    The impact of space experiments on our knowledge of the physics of the universe

    No full text
    corecore