42 research outputs found

    Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat

    Get PDF
    Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts

    Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28− Regulatory T Lymphocytes by TCR Crosslinking

    Get PDF
    Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system

    Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

    Get PDF

    Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells

    No full text
    The rapid differentiation of monocytes into macrophages (MΦ) and dendritic cells is a pivotal aspect of the innate immune response. Differentiation is triggered following recognition of microbial ligands that activate pattern recognition receptors or directly by pro-inflammatory cytokines. We demonstrate that interleukin-1β (IL-1β) induces the rapid differentiation of monocytes into CD209 + MΦ, similar to activation via Toll-like receptor 2/1, but with distinct phenotypic and functional characteristics. The IL-1β induced MΦ express higher levels of key markers of phagocytosis, including the Fc-receptors CD16 and CD64, as well as CD36, CD163 and CD206. In addition, IL-1β-induced MΦ exert potent phagocytic activity towards inert particles, oxidized low-density lipoprotein and mycobacteria. Furthermore, IL-1β-induced MΦ express higher levels of HLA-DR and effectively present mycobacterial antigens to T cells. Therefore, the ability of IL-1β to induce monocyte differentiation into MΦ with both phagocytosis and antigen-presenting function is a distinct part of the innate immune response in host defence against microbial infection. © 2013 John Wiley & Sons Ltd

    A randomized trial of training the non-dominant upper extremity to enhance laparoscopic performance.

    Get PDF
    Item does not contain fulltextAbstract Introduction: In laparoscopy, the surgeon's dominant arm will execute difficult tasks with less effort compared to the non-dominant arm. This leads to a relative overuse of muscles on this side. We hypothesized that training the non-dominant arm would improve laparoscopic skills. Material and methods: At baseline, all participants performed three validated tasks on a virtual reality simulator. After randomization, subjects in the intervention group were assigned training tasks. All these tasks had to be performed with the non-dominant hand. Within a week after a three-week study period, participants performed the same three tasks as before. Results: Twenty-six participants were included, 13 in each group. At baseline, there were no differences between groups on all tested parameters. Compliance to training tasks was good. At the end of three weeks, subjects in both groups showed similar improvement of skills on the non-dominant side. On the dominant side, however, subjects in the training group showed significant better improvement of skills on four out of eight parameters. Conclusion: Specific training of the non-dominant upper extremity appears to lead to improvement of skills on the dominant side, a phenomenon known in literature as intermanual transfer of skill learning. To improve laparoscopic skills, bimanual training is recommended.1 juli 201
    corecore