10 research outputs found
Multi-tool formaldehyde measurement in simulated and real atmospheres for indoor air survey and concentration change monitoring
Formaldehyde is of particular health concern since it is carcinogenic for human and ubiquitous in indoor air where people spend most of their time. Therefore, it is important to have suitable methods and techniques to measure its content in indoor air. In the present work, four different techniques have been tested in the INERIS exposure chamber and in indoor environments in comparison to a standard active method: passive sampling method based on the reaction of 2,4-dinitrophenylhydrazine with formaldehyde, two on-line continuous monitoring systems based on fluorescence and UV measurements and a portable commercialised analyser based on electrochemical titration. Two formaldehyde concentrations, about 10 and 25 μg m−3 were generated in an exposure chamber under controlled conditions of temperature, relative humidity, and wind speed to simulate real conditions and assess potential influence on passive sampling and continuous systems response. Influence of sampling periods on passive sampling has also been evaluated. The real atmosphere experiments have been performed in four different indoor environments: an office, a furniture shop, a shopping mall, and residential dwellings in which several potential formaldehyde sources linked to household activities have been tested. The analytical and sampling problems associated with each measurement method have been identified and discussed. An overall agreement between each technique has been observed and continuous analyzers allowed for formaldehyde concentrations change monitoring and secondary formation of that pollutant observation
Occupational Exposure and Environmental Release : The Case Study of Pouring TiO2 and Filler Materials for Paint Production
Pulmonary exposure to micro- and nanoscaled particles has been widely linked to adverse health effects and high concentrations of respirable particles are expected to occur within and around many industrial settings. In this study, a field-measurement campaign was performed at an industrial manufacturer, during the production of paints. Spatial and personal measurements were conducted and results were used to estimate the mass flows in the facility and the airborne particle release to the outdoor environment. Airborne particle number concentration (1 x 10(3)-1.0 x 10(4) cm(-3)), respirable mass (0.06-0.6 mg m(-3)), and PM10 (0.3-6.5 mg m(-3)) were measured during pouring activities. In overall; emissions from pouring activities were found to be dominated by coarser particles >300 nm. Even though the raw materials were not identified as nanomaterials by the manufacturers, handling of TiO2 and clays resulted in release of nanometric particles to both workplace air and outdoor environment, which was confirmed by TEM analysis of indoor and stack emission samples. During the measurement period, none of the existing exposure limits in force were exceeded. Particle release to the outdoor environment varied from 6 to 20 g ton(-1) at concentrations between 0.6 and 9.7 mg m(-3) of total suspended dust depending on the powder. The estimated release of TiO2 to outdoors was 0.9 kg per year. Particle release to the environment is not expected to cause any major impact due to atmospheric dilutionPeer reviewe
Methodology development for the characterization of toxicological risks related to particulate pollution in underground stations
International audienc
Développement d'une méthodologie pour la caractérisation des risques toxicologiques liés à la pollution particulaire en enceintes ferroviaires souterraines
International audienc
TOXinTRANSPORT: project about toxicological, chemical and physical characterizations of particles in railway environments
International audienceWhen studying the toxicological effects of pollutants, mostly this isachieved examining their action one at a time whereas in real life, many pollutantsact together in a given period of time. This is well known as the cocktaileffect. In addition, the close interactions between numerous physico-chemicaland toxicological effects are not always scrutinized. In this framework, the TOXinTRANSPORTproject was set up. It aimed at examining in-depth the close relationshipbetween the physicochemical and toxicological effects and the way theformer impacts the latter. The context was that of railway transport where thislink between physico-chemistry and toxicology was made. Numerous instrumentswere used to determine the physico-chemical properties of two environments,namely an underground platform and a railway rolling stock. This characterizationwas made along with toxicological analyzes. The originality of thisproject was to resort to a biosampler to collect aerosols prior to toxicologicalanalysis. This eliminates the tedious step of filter processing, technique usuallyused for sampling. The obtained results are presented and discussed
Déploiement en microenvironnement de 2 préleveurs cycloniques pour l'étude toxicologique de particules
International audienc
Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for Paint Production
Pulmonary exposure to micro- and nanoscaled particles has been widely linked to adverse health effects and high concentrations of respirable particles are expected to occur within and around many industrial settings. In this study, a field-measurement campaign was performed at an industrial manufacturer, during the production of paints. Spatial and personal measurements were conducted and results were used to estimate the mass flows in the facility and the airborne particle release to the outdoor environment. Airborne particle number concentration (1 × 103–1.0 × 104 cm−3), respirable mass (0.06–0.6 mg m−3), and PM10 (0.3–6.5 mg m−3) were measured during pouring activities. In overall; emissions from pouring activities were found to be dominated by coarser particles >300 nm. Even though the raw materials were not identified as nanomaterials by the manufacturers, handling of TiO2 and clays resulted in release of nanometric particles to both workplace air and outdoor environment, which was confirmed by TEM analysis of indoor and stack emission samples. During the measurement period, none of the existing exposure limits in force were exceeded. Particle release to the outdoor environment varied from 6 to 20 g ton−1 at concentrations between 0.6 and 9.7 mg m−3 of total suspended dust depending on the powder. The estimated release of TiO2 to outdoors was 0.9 kg per year. Particle release to the environment is not expected to cause any major impact due to atmospheric dilutio
PROCESS
PROCESS is a systems code at UKAEA that calculates in a self-consistent manner the parameters of a fusion power plant with a specified performance, ensuring that its operating limits are not violated, and with the option to optimise to a given function of these parameters.If you use this software, please cite it using the metadata from this file
Occupational Exposure and Environmental Release: The Case Study of Pouring TiO2 and Filler Materials for Paint Production
International audiencePulmonary exposure to micro- and nanoscaled particles has been widely linked to adverse health effects and high concentrations of respirable particles are expected to occur within and around many industrial settings. In this study, a field-measurement campaign was performed at an industrial manufacturer, during the production of paints. Spatial and personal measurements were conducted and results were used to estimate the mass flows in the facility and the airborne particle release to the outdoor environment. Airborne particle number concentration (1 x 10(3)-1.0 x 10(4) cm(-3)), respirable mass (0.06-0.6 mg m(-3)), and PM10 (0.3-6.5 mg m(-3)) were measured during pouring activities. In overall; emissions from pouring activities were found to be dominated by coarser particles >300 nm. Even though the raw materials were not identified as nanomaterials by the manufacturers, handling of TiO2 and clays resulted in release of nanometric particles to both workplace air and outdoor environment, which was confirmed by TEM analysis of indoor and stack emission samples. During the measurement period, none of the existing exposure limits in force were exceeded. Particle release to the outdoor environment varied from 6 to 20 g ton(-1) at concentrations between 0.6 and 9.7 mg m(-3) of total suspended dust depending on the powder. The estimated release of TiO2 to outdoors was 0.9 kg per year. Particle release to the environment is not expected to cause any major impact due to atmospheric dilution
PROCESS
PROCESS is a systems code at UKAEA that calculates in a self-consistent manner the parameters of a fusion power plant with a specified performance, ensuring that its operating limits are not violated, and with the option to optimise to a given function of these parameters.</span