1,061 research outputs found

    MEL-28 Is Downstream of the Ran Cycle and Is Required for Nuclear-Envelope Function and Chromatin Maintenance

    Get PDF
    SummaryEarly embryonic development depends on the faithful execution of basic cell biological processes whose coordination remains largely unknown. With a global network analysis, we found MEL-28 to be associated with two types of complexes, one implicated in nuclear-envelope function and the other in chromatin organization [1]. Here, we show that MEL-28, a protein that shuttles between the nucleus and the kinetochore during the cell cycle, is required for the structural and functional integrity of the nuclear envelope. In addition, mel-28(RNAi) embryos exhibit defects in chromosome condensation, pronuclear migration, kinetochore assembly, and spindle assembly. This combination of mel-28(RNAi) phenotypes resemble those caused by depleting members of the Ran cycle in C. elegans[2], a conserved cellular signaling pathway that is required for mitotic spindle assembly, nuclear-envelope reformation after mitosis, and nucleocytoplasmic exchange (reviewed in [3–8]). Although MEL-28 localization to the nuclear periphery is not dependent on nuclear pore components, it is dependent on RAN-1 and other key components of the Ran cycle. Thus, MEL-28 is downstream of the Ran cycle and is required for both proper nuclear-envelope function and chromatin maintenance

    Diverse roles of actin in C. elegans early embryogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The actin cytoskeleton plays critical roles in early development in <it>Caenorhabditis elegans</it>. To further understand the complex roles of actin in early embryogenesis we use RNAi and <it>in vivo </it>imaging of filamentous actin (F-actin) dynamics.</p> <p>Results</p> <p>Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. <it>In vivo </it>visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo.</p> <p>Conclusion</p> <p>During early <it>C. elegans </it>embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study indicate new insights into the cellular and developmental roles of the actin cytoskeleton.</p

    Protection against pertussis in humans correlates to elevated serum antibodies and memory B cells

    Get PDF
    Pertussis is a respiratory infection caused by Bordetella pertussis that may be particularly severe and even lethal in the first months of life when infants are still too young to be vaccinated. Adults and adolescents experience mild symptoms and are the source of infection for neonates. Adoptive maternal immunity does not prevent pertussis in the neonate. We compared the specific immune response of mothers of neonates diagnosed with pertussis and mothers of control children. We show that women have pre-existing pertussis-specific antibodies and memory B cells and react against the infection with a recall response increasing the levels specific serum IgG, milk IgA, and the frequency of memory B cells of all isotypes. Thus, the maternal immune system is activated in response to pertussis and effectively prevents the disease indicating that the low levels of pre-formed serum antibodies are insufficient for protection. For this reason, memory B cells play a major role in the adult defense. The results of this study suggest that new strategies for vaccine design should aim at increasing long-lived plasma cells and their antibodies

    Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment.

    Get PDF
    RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.This work was funded by grants from the Swiss National Science Foundation and an advanced European Research Council grant to Laurent Keller, grants from Cancer Research UK (C13474/A18583, C6946/A14492) and the Wellcome Trust (104640/ Z/14/Z, 092096/Z/10/Z) to Eric A. Miska, and grants from the National Institutes of Health to Sean M. West (NIGMSNHRA 5F32GM100614) and to Fabio Piano and Kristin Gunsalus (NHGRI U01 HG004276, NICHD R01 HD046236), and by research funding from New York University Abu Dhabi to Fabio Piano and Kristin Gunsalus

    A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans

    Get PDF
    SummaryBackgroundMetazoan miRNAs regulate protein-coding genes by binding the 3′ UTR of cognate mRNAs. Identifying targets for the 115 known C. elegans miRNAs is essential for understanding their function.ResultsBy using a new version of PicTar and sequence alignments of three nematodes, we predict that miRNAs regulate at least 10% of C. elegans genes through conserved interactions. We have developed a new experimental pipeline to assay 3′ UTR-mediated posttranscriptional gene regulation via an endogenous reporter expression system amenable to high-throughput cloning, demonstrating the utility of this system using one of the most intensely studied miRNAs, let-7. Our expression analyses uncover several new potential let-7 targets and suggest a new let-7 activity in head muscle and neurons. To explore genome-wide trends in miRNA function, we analyzed functional categories of predicted target genes, finding that one-third of C. elegans miRNAs target gene sets are enriched for specific functional annotations. We have also integrated miRNA target predictions with other functional genomic data from C. elegans.ConclusionsAt least 10% of C. elegans genes are predicted miRNA targets, and a number of nematode miRNAs seem to regulate biological processes by targeting functionally related genes. We have also developed and successfully utilized an in vivo system for testing miRNA target predictions in likely endogenous expression domains. The thousands of genome-wide miRNA target predictions for nematodes, humans, and flies are available from the PicTar website and are linked to an accessible graphical network-browsing tool allowing exploration of miRNA target predictions in the context of various functional genomic data resources

    The bnt162b2 vaccine induces humoral and cellular immune memory to sars-cov-2 Wuhan strain and the Omicron variant in children 5 to 11 years of age

    Get PDF
    SARS-CoV-2 mRNA vaccines prevent severe COVID-19 by generating immune memory, comprising specific antibodies and memory B and T cells. Although children are at low risk of severe COVID-19, the spreading of highly transmissible variants has led to increasing in COVID-19 cases and hospitalizations also in the youngest, but vaccine coverage remains low. Immunogenicity to mRNA vaccines has not been extensively studied in children 5 to 11 years old. In particular, cellular immunity to the wild-type strain (Wuhan) and the cross-reactive response to the Omicron variant of concern has not been investigated. We assessed the humoral and cellular immune response to the SARS-CoV-2 BNT162b2 vaccine in 27 healthy children. We demonstrated that vaccination induced a potent humoral and cellular immune response in all vaccinees. By using spike-specific memory B cells as a measurable imprint of a previous infection, we found that 50% of the children had signs of a past, undiagnosed infection before vaccination. Children with pre-existent immune memory generated significantly increased levels of specific antibodies, and memory T and B cells, directed against not only the wild type virus but also the omicron variant

    Prenatal tobacco smoke exposure increases hospitalizations for bronchiolitis in infants

    Get PDF
    BACKGROUND: Tobacco smoke exposure (TSE) is a worldwide health problem and it is considered a risk factor for pregnant women's and children's health, particularly for respiratory morbidity during the first year of life. Few significant birth cohort studies on the effect of prenatal TSE via passive and active maternal smoking on the development of severe bronchiolitis in early childhood have been carried out worldwide. METHODS: From November 2009 to December 2012, newborns born at ≥ 33 weeks of gestational age (wGA) were recruited in a longitudinal multi-center cohort study in Italy to investigate the effects of prenatal and postnatal TSE, among other risk factors, on bronchiolitis hospitalization and/or death during the first year of life. RESULTS: Two thousand two hundred ten newborns enrolled at birth were followed-up during their first year of life. Of these, 120 (5.4%) were hospitalized for bronchiolitis. No enrolled infants died during the study period. Prenatal passive TSE and maternal active smoking of more than 15 cigarettes/daily are associated to a significant increase of the risk of offspring children hospitalization for bronchiolitis, with an adjHR of 3.5 (CI 1.5-8.1) and of 1.7 (CI 1.1-2.6) respectively. CONCLUSIONS: These results confirm the detrimental effects of passive TSE and active heavy smoke during pregnancy for infants' respiratory health, since the exposure significantly increases the risk of hospitalization for bronchiolitis in the first year of lif

    Risk factors for bronchiolitis hospitalization during the first year of life in a multicenter Italian birth cohort

    Get PDF
    BACKGROUND: Respiratory Syncytial Virus (RSV) is one of the main causes of respiratory infections during the first year of life. Very premature infants may contract more severe diseases and 'late preterm infants' may also be more susceptible to the infection. The aim of this study is to evaluate the risk factors for hospitalization during the first year of life in children born at different gestational ages in Italy. METHODS: A cohort of 33-34 weeks gestational age (wGA) newborns matched by sex and age with two cohort of newborns born at 35-37 wGA and &gt; 37 wGA were enrolled in this study for a three-year period (2009-2012). Hospitalization for bronchiolitis (ICD-9 code 466.1) during the first year of life was assessed through phone interview at the end of the RSV season (November-March) and at the completion of the first year of life. RESULTS: The study enrolled 2314 newborns, of which 2210 (95.5 %) had a one year follow-up and were included in the analysis; 120 (5.4 %) were hospitalized during the first year of life for bronchiolitis. Children born at 33-34 wGA had a higher hospitalization rate compared to the two other groups. The multivariate analysis carried out on the entire population associated the following factors with higher rates for bronchiolitis hospitalization: male gender; prenatal treatment with corticosteroids; prenatal exposure to maternal smoking; singleton delivery; respiratory diseases in neonatal period; surfactant therapy; lack of breastfeeding; siblings &lt;10 years old; living in crowded conditions and/or in unhealthy households and early exposure to the epidemic RSV season. When analysis was restricted to preterms born at 33-34 wGA the following variables were associated to higher rates of bronchiolitis hospitalization: male gender, prenatal exposure to maternal smoking, neonatal surfactant therapy, having siblings &lt;10 years old, living in crowded conditions and being exposed to epidemic season during the first three months of life. CONCLUSION: Our study identified some prenatal, perinatal and postnatal conditions proving to be relevant and independent risk factors for hospitalization for bronchiolitis during the first year of life. The combination of these factors may lead to consider palivizumab prophylaxis in Italy

    Long-term interdisciplinary therapy reduces endotoxin level and insulin resistance in obese adolescents

    Get PDF
    Aim: the purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy.Design: the present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15-19 y) with a body mass index >95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. in addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR).Results: the most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. in addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels.Conclusions: the present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. in addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Dept Fisiol, São Paulo, BrazilDept Biociencias, São Paulo, BrazilDept Psicobiol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, São Paulo, BrazilICB Univ São Paulo USP, Grp Metab & Canc, São Paulo, BrazilUniv So Santa Catarina, Hlth Sci Unit, Lab Exercise Biochem & Physiol, Criciuma, SC, BrazilUniversidade Federal de São Paulo UNIFESP, São Paulo, BrazilFAPESP: 2011/50356-0FAPESP: 2011/50414-0Web of Scienc
    corecore