106 research outputs found

    An empirical analysis of online price dispersion in the Italian airline industry

    Get PDF
    Firms operating in the electronic marketplace set and adjust prices to affect demand and profitability. In service markets, such as airline markets, different prices are commonly offered by diverse firms to accommodate to a variety of market segments having particular sets of consumer attitudes. This variation in prices is the price dispersion and is based on market distinctiveness deriving from customer heterogeneity as well as the peculiar competition in the specific market arena. In this paper we use a panel dataset from the Italian airline market to investigate the role of competition and different online channels in the emergence of price dispersion. Specifically, we examine the unclear role of competition in price dispersion with novel data collected from different online channels, namely direct and Online Travel Agency (OTA) channels. We find that price dispersion is higher in routes where competition is higher even in presence of only one segment, namely the business segment. Our results also show that price dispersion significantly differs across different types of online channels

    The use of water for technical development or technical development for the use of water? Systemic and Ecological considerations about the clean energy production in urban context.

    Get PDF
    Nowadays in the global context, the use of water resources for daily acti­vities is one of the main topic discussed by the international community. This paper presents a required reflection on paradigm shift toward an awa­re water management. As we know, in the past, especially during the 18th and 19th centuries, water power plays a crucial role in early stages of indu­strialization. Waterwheels was applied in many industrial sectors, as in tex­tile, iron and wood production, improving manufacturing processes and af­fecting economic, environmental, social and cultural structure of societies. Water power is one of the most known renewable energy and scientific and technological innovations lead toward the introduction of new machines. Many industrial sites and cities were developed near rivers, lakes and other watersheds and citizens improved technical solutions to manage water re­sources for producing hydroelectric power. Considering the global goals of the Agenda 2030, especially the SDG 6, focu­sed on providing sustainable management of water and on fighting water scarcity, and the SDG 7, focused on ensuring renewable and clean energy, we need to tackle some of main current issues to move toward sustainabili­ty. Many other examples suggest that we need to consider that the develop­ment of human communities depends by the availability of water resources and also to undertake considerable actions for a sustainable use. Water power is considered one of the most ancient type of clean and su­stainable energy and it provides many benefits for local citizens, as redu­cing water and air pollution and enhancing local resources. Hydroelectric power includes both large-scale hydroelectric dams and small run-of-the-river plants and the construction of hydroelectric power stations depends by the topography of the land. On the other hands the construction of new hydroelectric facilities might impact the environment in land use changing and also in preserve aquatic wildlife’s ecosystems. In some cases in large water reservoirs the amount of nutrients and sediments might increase, changing habitats and conditions for animal and plant life and increasing greenhouse gasses emissions. On one way some targets expressed by the SDG 6 (e.g. 6.6) regards the protection and the restoration of water-related ecosystems, as rivers and lakes, and on the other way some of them focus on the development of innovative technologies for wastewater treatment (e.g. 6.A). We need to look at these issues in a systemic view and to apply the systems thinking approach in water management practices to sustain local communities. A systemic approach to hydroelectric power considers the impact in design practice of dams on natural ecosystems and urban contexts and it tries to reduce negative effects through the application of ecological principles. Eco­logical Engineering practice works to provide benefits for humans, to pre­serve natural ecosystems (Bergen, Bolton, Fridley, 2001) and it designs in­tegrated systems (Mitsch & Jørgensen, 1989; Mitsch, 1996). In the ecological and systemic thinking, we shouldn’t consider water only like a resource for human benefits, but it is also habitat for other species of plants and animals. In this paper we would present benefits provided by small-scale hydroe­lectric facilities through a case study made in the urban context. It under­lines how a natural and local resource, as water of urban river, can be used in order to “produce” systemic services for human being, in a sustainable way. Some of these benefits are the protection of biodiversity of riparian ecosystem and the reduction of environmental impact and noise and air pollution. Mini-hydro power presents many advantages as the dependence by natural flow of watercourse, the low relative cost of the system and possible ap­plications in remote areas. It creates new opportunities for rural and isolated communities but also reduce the environmental impact in urban and subur­ban areas. The use of this local and natural resource for micro hydroelectric power contributes to increase urban metabolism, producing clean energy that can be used in the local context. The case study here presented is a low heat hydroelectric power plant that was developed in Turin urban city center, in Regio Parco district, an histo­rical interest area. During the 20th century in this district were established one of the oldest Italian manufacture, Manifattura Tabacchi, and the main lighting company of Turin. The small scale hydroelectric power plant is lo­cated in the Dora Riparia river, known for its importance, in 20th century, in generating hydroelectric power for local manufactures in Vanchiglia and Dora disctricts. The aim of the project is to recover the existing weir intake structure, that in XIX century was used to deflect a part of water’s cour­se into Regio Parco canal for energy supply of local manufactures. It was technically transformed in a inflatable weir used to produce hydroelectric power, placed in electric grid of the city, and to reduce the urban flood risk. Considering the purpose to preserve river ecosystem, the project has plan­ned to establish a fish ladder in vertical slot to facilitate fishes’ natural mi­gration. It is also designed to reduce the environmental impact on landsca­pe, local vegetation and urban noise. We need to apply systems thinking for providing benefits for humans and at the same time preserving ecosystems and enhancing historical pre-industrial heritage. Managing local resources and providing benefits for the whole context is important to promote sustai­nable urban metabolism, through the application of the holistic viewpoint. Urban context and natural river ecosystem are complex systems and design in-for-with them is a practice to undertake in a systemic view. Finally this paper’s purpose is to show how systems thinking and ecological principles can be applied to face one of the most important challenge of our time: pro­duce clean and sustainable energy in site and reduce its ecological footprint

    Data from GNSS-Based Passive Radar to Support Flood Monitoring Operations

    Get PDF
    Signals transmitted by Global Navigation Satellite Systems can be exploited as signals of opportunity for remote sensing applications. Satellites can be seen as spread sources of electromagnetic radiation, whose signals reflected back from ground can be processed to detect and monitor geophysical properties of the Earth’s surface. In the past years, several experiments of GNSS-based passive radars have been demonstrated successfully, mainly from piloted aircraft. Then, the proliferation of small UAVs enabled new applications where GNSS-based passive radars can provide useful geospatial information for environmental monitoring. Thanks to the availability of commercial Radio Frequency front ends and the enhanced processing capabilities of embedded platforms, it is possible to develop GNSS-based passive radars at moderated cost. These can be mounted on Unmanned Aerial Vehicles, and be used to support the sensing of environmental parameters. This paper presents the results of an experimental campaign based on the use of a UAV for GNSS reflectometry, tailored to the detection of the presence of water on ground after floods. The work is part of wider project, which intends to develop solutions to support rescuers and decision makers to manage operations after natural disasters, through the integration and modelling of geospatial data coming from multiple sources

    Automatic three-dimensional features extraction: The case study of L'Aquila for collapse identification after April 06, 2009 earthquake

    Get PDF
    This paper illustrates an innovative methodology for post-earthquake collapsed building recognition, based on satellite-image classification methodologies and height variation information. Together, the techniques create a robust classification that seems to yield good results in this application field. In the first part of this study, two different feature extraction methodologies were compared, based respectively on pixel-based and object-oriented approaches. Then the classification results of the most accurate classification methodology, obtained on an eight band WorldView-2 monoscopic image, were completed with height variation information before and after the event. The height difference is calculated, comparing a photogrammetric DSM, obtained using a photogrammetric rigorous orbital model on some EROS-B 0.7 metre across-track stereopairs with a 'roof model' before the earthquake

    GNSS Radio Frequency Interference Monitoring from LEO Satellites: An In-Laboratory Prototype

    Get PDF
    The disruptive effect of radio frequency interference (RFI) on global navigation satellite system (GNSS) signals is well known, and in the last four decades, many have been investigated as countermeasures. Recently, low-Earth orbit (LEO) satellites have been looked at as a good opportunity for GNSS RFI monitoring, and the last five years have seen the proliferation of many commercial and academic initiatives. In this context, this paper proposes a new spaceborne system to detect, classify, and localize terrestrial GNSS RFI signals, particularly jamming and spoofing, for civil use. This paper presents the implementation of the RFI detection software module to be hosted on a nanosatellite. The whole development work is described, including the selection of both the target platform and the algorithms, the implementation, the detection performance evaluation, and the computational load analysis. Two are the implemented RFI detectors: the chi-square goodness-of-fit (GoF) algorithm for non-GNSS-like interference, e.g., chirp jamming, and the snapshot acquisition for GNSS-like interference, e.g., spoofing. Preliminary testing results in the presence of jamming and spoofing signals reveal promising detection capability in terms of sensitivity and highlight room to optimize the computational load, particularly for the snapshot-acquisition-based RFI detector

    an application of cosmo sky med to coastal erosion studies

    Get PDF
    AbstractStarted in 2009, the COSMOCoast project aims to the investigation of the potential of Remote Sensing in support to the management of coastal areas. Particular attention is paid to the contribution of data acquired from the COSMO-SkyMed constellation, in view of their frequency of acquisitions and ground resolution; in particular this paper aims at assessing the potential of COSMO-SkyMed data for coastline delineation. The results are conceived to be of particular interest for public administration bodies in charge of coastal defense. Keywords: Remote Sensing, Coastal Zones Management, COSMO-SkyMed

    The use of water for technical development or technical development for the use of water?

    Get PDF
    Nowadays in the global context, the use of water resources for daily acti­vities is one of the main topic discussed by the international community. This paper presents a required reflection on paradigm shift toward an awa­re water management. As we know, in the past, especially during the 18th and 19th centuries, water power plays a crucial role in early stages of indu­strialization. Waterwheels was applied in many industrial sectors, as in tex­tile, iron and wood production, improving manufacturing processes and af­fecting economic, environmental, social and cultural structure of societies. Water power is one of the most known renewable energy and scientific and technological innovations lead toward the introduction of new machines. Many industrial sites and cities were developed near rivers, lakes and other watersheds and citizens improved technical solutions to manage water re­sources for producing hydroelectric power. Considering the global goals of the Agenda 2030, especially the SDG 6, focu­sed on providing sustainable management of water and on fighting water scarcity, and the SDG 7, focused on ensuring renewable and clean energy, we need to tackle some of main current issues to move toward sustainabili­ty. Many other examples suggest that we need to consider that the develop­ment of human communities depends by the availability of water resources and also to undertake considerable actions for a sustainable use. Water power is considered one of the most ancient type of clean and su­stainable energy and it provides many benefits for local citizens, as redu­cing water and air pollution and enhancing local resources. Hydroelectric power includes both large-scale hydroelectric dams and small run-of-the-river plants and the construction of hydroelectric power stations depends by the topography of the land. On the other hands the construction of new hydroelectric facilities might impact the environment in land use changing and also in preserve aquatic wildlife’s ecosystems. In some cases in large water reservoirs the amount of nutrients and sediments might increase, changing habitats and conditions for animal and plant life and increasing greenhouse gasses emissions. On one way some targets expressed by the SDG 6 (e.g. 6.6) regards the protection and the restoration of water-related ecosystems, as rivers and lakes, and on the other way some of them focus on the development of innovative technologies for wastewater treatment (e.g. 6.A). We need to look at these issues in a systemic view and to apply the systems thinking approach in water management practices to sustain local communities. A systemic approach to hydroelectric power considers the impact in design practice of dams on natural ecosystems and urban contexts and it tries to reduce negative effects through the application of ecological principles. Eco­logical Engineering practice works to provide benefits for humans, to pre­serve natural ecosystems (Bergen, Bolton, Fridley, 2001) and it designs in­tegrated systems (Mitsch & Jørgensen, 1989; Mitsch, 1996). In the ecological and systemic thinking, we shouldn’t consider water only like a resource for human benefits, but it is also habitat for other species of plants and animals. In this paper we would present benefits provided by small-scale hydroe­lectric facilities through a case study made in the urban context. It under­lines how a natural and local resource, as water of urban river, can be used in order to “produce” systemic services for human being, in a sustainable way. Some of these benefits are the protection of biodiversity of riparian ecosystem and the reduction of environmental impact and noise and air pollution. Mini-hydro power presents many advantages as the dependence by natural flow of watercourse, the low relative cost of the system and possible ap­plications in remote areas. It creates new opportunities for rural and isolated communities but also reduce the environmental impact in urban and subur­ban areas. The use of this local and natural resource for micro hydroelectric power contributes to increase urban metabolism, producing clean energy that can be used in the local context. The case study here presented is a low heat hydroelectric power plant that was developed in Turin urban city center, in Regio Parco district, an histo­rical interest area. During the 20th century in this district were established one of the oldest Italian manufacture, Manifattura Tabacchi, and the main lighting company of Turin. The small scale hydroelectric power plant is lo­cated in the Dora Riparia river, known for its importance, in 20th century, in generating hydroelectric power for local manufactures in Vanchiglia and Dora disctricts. The aim of the project is to recover the existing weir intake structure, that in XIX century was used to deflect a part of water’s cour­se into Regio Parco canal for energy supply of local manufactures. It was technically transformed in a inflatable weir used to produce hydroelectric power, placed in electric grid of the city, and to reduce the urban flood risk. Considering the purpose to preserve river ecosystem, the project has plan­ned to establish a fish ladder in vertical slot to facilitate fishes’ natural mi­gration. It is also designed to reduce the environmental impact on landsca­pe, local vegetation and urban noise. We need to apply systems thinking for providing benefits for humans and at the same time preserving ecosystems and enhancing historical pre-industrial heritage. Managing local resources and providing benefits for the whole context is important to promote sustai­nable urban metabolism, through the application of the holistic viewpoint. Urban context and natural river ecosystem are complex systems and design in-for-with them is a practice to undertake in a systemic view. Finally this paper’s purpose is to show how systems thinking and ecological principles can be applied to face one of the most important challenge of our time: pro­duce clean and sustainable energy in site and reduce its ecological footprint

    Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies

    Get PDF
    Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC

    Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis

    Get PDF
    Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only “real world” data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given “confidence threshold”. For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how “real world” data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values
    • …
    corecore