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Abstract
This paper illustrates an innovative methodology for post-earthquake collapsed building 
recognition, based on satellite-image classification methodologies and height variation 
information. Together, the techniques create a robust classification that seems to yield good 
results in this application field. In the first part of this study, two different feature extraction 
methodologies were compared, based respectively on pixel-based and object-oriented 
approaches. Then the classification results of the most accurate classification methodology, 
obtained on an eight band WorldView-2 monoscopic image, were completed with height 
variation information before and after the event. The height difference is calculated, 
comparing a photogrammetric DSM, obtained using a photogrammetric rigorous orbital 
model on some EROS-B 0.7 metre across-track stereopairs with a ‘roof model’ before the 
earthquake.
Keywords: image classification, L’Aquila earthquake, collapses, EROS-B, World-View-2.

State of the art
The seismic events that have recently affected many areas of the planet highlight the 
need to respond to emergencies in a rapid and effective way. To understand and possibly 
mitigate their impact, particularly on human beings, research is being conducted for each 
of the characteristic phases of such events, i.e., before the event (early warning systems, 
risk assessment), during the event (disaster-alerting systems), immediately after the event 
(emergency response, impact assessment), and during the reconstruction phase (planning 
of the make safe and restoration). Rapid impact assessment after a catastrophic event is 
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crucial for initiating effective emergency response actions, and remote sensing data seem 
to provide important information about the affected areas, since it can quickly map the 
regions of interest [Brunner et al., 2010]. The use of remote sensing within the domain of 
natural hazards and disasters has become increasingly common, due in part to the increased 
awareness of environmental issues such as climate change, but also to the increase in 
geospatial technologies [Joyce et al., 2009]. For example, information regarding the impact 
of an earthquake can be derived from satellite imagery by comparing data from a chosen 
reference before the event (pre-event) to imagery acquired immediately after the event 
(post-event). Remote sensing has been used in the field of earthquake research since the 
1970s, with the first appearance of satellite images [Tronin, 2006], but the methodologies 
performed in previous decades can now be optimised, thanks to the availability of very high 
resolution satellite imagery.
For example, the analysis of seismic contest can be performed using SAR (in particular 
inSAR techniques) imagery to consider and evaluate changes in the backscatter coefficient 
and intensity [Singhroy, 1995].
According to the literature, an analysis of the consequences of past events can suggest 
proper strategies to mitigate seismic risk [Terenzio et al., 2013]. In the recent past, specific 
infrastructures were developed to manage data for early damage assessment in a post-
seismic scenario. One such instance was the case of the Bam earthquake, during which 
the Earthquake Engineering Research Institute (EERI) field team deployed the VIEWS 
(Visualizing Impacts of Earthquakes With Satellites), a portable reconnaissance system that 
streamlines and accelerates damage survey activities. VIEWS integrated a base layer of 
georeferenced satellite or airbourne imagery collected before and after the event with real-
time GPS readings; georeferenced digital photographs and/or video; and other geospatial 
datasets, including damage maps and street networks [Adams et al., 2005]. During a post-
seismic period, surveying with classical topographic instruments is often complex because 
of the possible danger in the area. Although the use of aerial photogrammetry might be less 
dangerous, it could not, in most cases, produce detailed and accurate information about 
damaged structures such as facades, even if oblique images may be sued for surveying 
buildings. Consequently, in recent years, some studies on the use of UAV (Unmanned 
Aerial Vehicles) for surveying were performed by different research groups. The UAVs do, 
in fact, detect areas of small extensions; moreover, they do so in short time frames and with 
reduced costs. As a result, they are more often used for data collection in areas affected by 
earthquakes, landslides, subsidence, avalanches, or forest fires [Bendeaet al., 2008; Adams 
et al., 2011; Baiocchi et al., 2013]. In fact, UAVs are valuable sources of data for inspection, 
surveillance, and 3D modelling issues [Nex et al., 2014].
Change detection on high-resolution satellite images still remains the primary technique 
used in these situations because it allows a large number of images to be made available 
in a short amount of time. This essential application of remote sensing technology has 
been studied and applied since the 1980s; its technique consists of high or very high 
resolution satellite image processing for the detection and/or discrimination of changes 
in both environmental and anthropic context over time [Singh, 1989; Lu et al., 2014]. 
Many types of change detection methods are included in multi-spectral image data, but the 
most utilised ones are based on image classification, whereby it is possible to individuate 
collapsed buildings affected by earthquakes by considering the difference between their 
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spectral signature and those of undamaged ones. The classification could be performed with 
pixel-based traditional algorithms or object-oriented techniques. However, several previous 
studies have revealed that pixel-based algorithms sometimes fail to recognise collapses. 
For this reason, after the Kobe earthquake of 1995, Yamazaki [2001] tested a context-based 
approach, which simulates the human perception for damage detection. Although literature 
abounds with various speculation about the problems affecting the pixel-based approach 
[Cracknell, 1998; Blaschke, 2010], the authors all agree that, in many applications, the 
approach based on comparing single pixels could be ineffective.
Other authors have already explained the disadvantage of traditional methods that 
provide only a two-dimensional (2D) damage change of the collapsed buildings, and 
have underlined the importance of detecting collapsed buildings in an earthquake with 
a 3D-based approach. In other words, it would be more effective to consider the height 
change of the buildings by using pre- and post-seismic stereo image pairs. Tong et al. 
[2012] used this approach on the case study of the May 2008 Wenchuan earthquake, 
using Ikonos stereopairs. The accuracy of better than 1.1 m in planimetry and 1.5 m in 
height that can be achieved, as the authors stated, from the pre- and post-seismic Ikonos 
stereo image pairs guarantees the feasibility of detecting 3D geometric changes in the 
earthquake-induced building collapses from pre- and post-seismic HRSI stereo images 
[Tong et al., 2012]. Also, DSMs from aerial imagery were tested [Turkeret al., 2005] for 
the detection of the collapsed buildings by using digital elevation models (DEMs) before 
and after the earthquake. In this study, the two digital models were compared once they 
were extracted, and the obtained height difference was analysed building by building to 
detect where it exceeded a specified threshold level between pre- and post-earthquake 
measurements.
Baiocchi et al. [2010] developed research on the Umbria-Marche (Italy) earthquake 
(09/26/1997) by using both techniques. In particular, they compared DSM extracted 
from aerial (before) stereopairs and Ikonos (after) stereopairs, evidencing that some false 
detections were due to errors in correlation and interpolation of both DEMs.   
The present paper will illustrate the advantages of combining several satellite image 
classification methodologies with height variation information to better identify collapsed 
buildings after an earthquake. There are several benefits to the combined use of these two 
techniques. Using only the change detection is not always effective for these applications 
because a collapsed building may have the same radiometry as an undamaged one, while 
the height differences should optimise the recognition of collapses. To reduce false 
height-difference effects, the height of the pre-event situation was acquired from vectorial 
information. This information was restricted to the areas where building presence was 
reported, and was obtained using a digital elevation model of the roofs only. 
As previously stated, in recent years, growing attention has been paid to remote sensing 
and GIS when used for disaster management applications [Zlatanova, 2008; Boccardo, 
2013]. For this reason, the test area has been designated as L’Aquila city, in the Abruzzo 
region of Italy. This city was struck by a series of earthquakes in April 2009, devastating its 
historic centre and the surrounding area. This event destroyed or seriously compromised 
a significant cultural and historic heritage, the protection of which will factor heavily 
in the reconstruction planning. In addition to the 300 victims and 1,500 wounded, the 
earthquake damaged about 15,000 buildings, including landmarks in the city such as the 
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Palace of the Prefecture, the dome of the church of Anime Sante, the Student House, and 
the churches of Santa Maria Paganica and the Santa Maria di Collemaggio (the last is 
protected by UNESCO). The city centre was secured, but its restoration has only begun 
(May 2014).

Data and methods
For the test area, a very high resolution WorldView-2 satellite monoscopic image was 
acquired. The new generation of VHR optical images (≤ 1 m), such as WorldView-2, enable 
the detection of minute changes on the surface; they also introduce some new problems 
related to the large amount of information being gathered, which were not encountered 
with the previous sensors [Dell’Acqua et al., 2011]. The image displayed in Figure 1 was 
acquired on August 9, 2010, a few months after the main seismic event took place. It covers 
about 50 km2 of the historical centre of the city, extending also to rural and peripheral 
areas.

Figure 1 - WorldView-2 image of L’Aquila (figure is 
approximately 50 Km2).

To complete the classification, height information was extracted from DSM obtained from 
an across-track stereopair of L’Aquila acquired by the EROS-B satellite on April 17, 2009 
and April 24, 2009, just a few days after the main seismic event (Fig. 2). Actually, the 
images utilised cannot be properly defined as stereopairs because they are, in effect, two 
single monoscopic acquisitions taken on two consecutive days; but because of its relative 
geometric similarity to a stereoscopic acquisition, it can be considered similar to an actual 
across-track stereopair; in previous papers, authors [Baiocchi et al., 2013] described the 
acquisitions as pseudostereopairs, but to avoid possible confusion, they will be referenced 
in this paper as across-track stereopairs.
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Figure 2 - Eros-B across-track stereopair of L’Aquila.

To perform a classification on a monoscopic satellite image, it is mandatory to use a 
pansharp image [Parente and Santamaria, 2013], an image that has the geometric 
resolution of pancromatic band and the color of multispectral ones. Thus, once obtained, 
we orthorectified the pansharpened image using 22 GPS/GNSS RTK control points 
equally distributed on the frame and a digital elevation model obtained from 1:5000 
scale regional technical cartography. The expected planimetric and altimetric accuracies 
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were, respectively, 0.05 m and 0.10 m for GCPs (Ground Control Points) and 1.0 m 
and 3.5 m for cartography. Considering the extension and the heterogeneity of the study 
area, we divided the image into 9 subsets, approximately 2.3 x 2.3 km each, as shown in 
Figure 3.This step is often recommended in order to reduce the processing time required 
by high-dimension images, but also to optimise the classification according to different 
characteristics of each subset.

Figure 3 - The 9 subsets of WorldView-2 image.
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We then performed the classification with two algorithms: the object-oriented approach as 
implemented in eCognition Developer 8.0 and the pixel-based approach, implemented in 
the software Envi Ex. The adopted class hierarchy was the same for both cases and for each 
subset of images, to allow for a reliable comparison of the final results. A list of the classes 
and relative subclasses is provided in Figure 4.

Figure 4 - The classes and subclasses 
identified in the image (class hierarchy).

The object-oriented approach toward image analysis is based on the idea that the important 
information necessary to interpret an image is not represented only in a single pixel, but in 
meaningful image objects and their mutual relationships. The basic difference, especially 
with regard to pixel-based procedures, is that this technique doesn’t classify single pixels, 
but rather image objects that are extracted in a previous image segmentation step; that is, it 
uses a bottom-up, region-growing technique, starting with one-pixel objects. Starting at an 
arbitrary point in the image with one-pixel objects, and in a number of consecutive steps, 
the pixel objects are enlarged to bigger pixel groups (segments) until certain heterogeneity 
is reached. The obtained segments are optimised using three homogeneity criteria: scale, 
shape, and color. Obviously, the scale parameter, which defines the mean dimension of the 
image object identified, plays a fundamental role in the robustness of the classification [Al-
Khudhairy et al., 2005]. Indeed, the scale parameter must be chosen according to different 
situations and goals. For this reason, in this experiment, we tested the segmentation results 
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obtained using different scale parameters (Fig. 5), and approximately considered the target 
object dimension that corresponds with the dimensions of the roof of a building.

Figure 5 - Results of segmentation with different scale parameters (20 and 60) performed on a subset 
of image.

For the present study and imagery used, a scale parameter of 60 seemed to result in the 
best performance, but this can only be considered as a tentative guideline for future 
experimentations because several tests should be performed to find, case by case, the scale 
that best fits the specific application for the image.
The processing time of the segmentation obviously depends on the number of image 
objects that have to be created during the segmentation; again, it depends mainly on the 
scale parameter. In the example reported in this paper, with a scale parameter of 60, the 
processing time for each 2.3 x 2.3 km subset was about two minutes. 
After the segmentation, the classification could be performed in different ways and through 
different steps. In this case, because attention had to be focused on the buildings class, we 
decided to begin by classifying all of the vegetation using classical NDVI criteria. The 
NDVI (Normalised Difference Vegetation Index), as it is well known, is calculated from the 
visible and near-infrared light reflected by vegetation [1].

NDVI
NIR VIS
NIR VIS

=
−( )
+( ) [ ]1

Calculations of NDVI always result in a number that ranges from minus one (-1) to plus 
one (+1); however, the absence of green leaves gives a value close to zero. A value of zero 
implies an absence of vegetation, and a value close to +1 (0.8 – 0.9) indicates the highest 
possible density of green leaves. In this case, the NDVI feature was created by combining 
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channels 5 (red channel) and 7 (near infrared channel) of the WorldView-2 image. Then a 
threshold was chosen to accurately assign the objects to the vegetation class for the specific 
characteristics of the images; one must remember that, due to the elevated number of bands 
(8) in this satellite, the interval in each single band is different from that of the most diffused, 
four-band satellites [Padwick et al., 2013].The result obtained from the NDVI classification 
is displayed in Figure 6. 

Figure 6 - Classification of vegetated areas through NDVI.

A detailed explanation of this phase is omitted from this article for issues of length, but a 
complete description can be found in a previous paper [Baiocchi et al., 2013]. A literature 
review revealed the concern that use of the NDVI for the elimination of vegetation from 
further data processing steps carries the risk that the shadowed parts of the buildings will also 
be eliminated from the processing [Grigillo et al., 2011]. For this reason, the same procedure 
was used to classify the shadows in the image. In this case, a predefined feature of brightness 
was used, so after the most appropriate threshold of brightness was chosen, the unclassified 
objects from previous classifications were assigned to the shadows class (Fig. 7). 
For all other classes in our hierarchy, we adopted a nearest-neighbour classification because 
this has been deemed a proven and robust classifier. In fact, by considering identified 
samples as representatives for each class, the algorithm searches for the closest sample 
object in the feature space for each image object. In some cases, we completed the class 
description by designating specific parameters. For example, for the buildings class, we 
added a threshold regarding the extent (area > 80 m2), while for the shadows, we inserted 
a condition about the proximity to other classes such as vegetation or buildings (distance 
to buildings < 2 m). The selected samples are shown in Figure 8; it is imperative that this 
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operation be performed manually by selecting the appropriate number of samples, which 
usually seems to be correlated to the total number of image objects created during the 
segmentation; furthermore, the samples must be equally distributed over the entire image.
In Figure 9, the results of the classification for two subsets of our image are shown.
During the present experimentation, the nearest-neighbour classification phase varied with 
regard to the processing time, depending on the category being classified, the features 
selected, and so on; as the rule sets increased in complexity, so did the time needed to 
complete the classification. 

Figure 7 - Classification of shadows through brightness features.

Usually, this process took between 30 min and 60 min for each subset of the image. Following 
the classification, the rule-set was applied, with small changes made to all subsets of the 
image; Figure 10 shows the vector file of polygon buildings, with the same file overlaid 
with the satellite image.
The same class hierarchy was adopted for the second algorithm (pixel-based approach). For 
each class, we selected representative pixels; thus, this procedure is called the supervised 
pixel-based classification. The classification algorithm identified the pixels belonging to 
the various classes, according to the maximum probability of belonging to the class. As in 
the previous case, the vegetation was identified automatically by exploiting the spectral 
response in the different bands, especially through the vegetation index NDVI, combining 
bands of red and near infrared. The results obtained are shown in Figure 11.
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Figure 8 - Samples selected for each class of class hierarchy.

Figure 9 - Classification results (object-oriented approach) on some subsets (red for buildings, gray 
for streets, green for vegetated areas, and black for shadows).
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Figure 10 - The vector file of buildings obtained after the image classification (left) and the same file 
overlapped to a satellite image (right).

Figure 11 - Pixel-based classification results of some subsets (historic centre of L’Aquila).

Our purpose was to complete the classification results for height information, so we tried 
to identify collapsed buildings by considering their height differences from before and 
after the earthquake. For this reason, we decided to compare the pre- and post-seismic 
events model. The DSM before the main seismic event was extracted by 1:5000 vectorial 
cartography, considering only the polygons of the buildings through a rasterisation process 
in the GIS environment (referred to as roof model), as shown in Figure 12.
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Figure 12 - Digital Surface Model before (left) and after (right) the earthquake.

The model of the post-seismic period was obtained from the EROS-B across-track 
stereopair of L’Aquila city .The differences of both models in Figure 12 are obviously due 
to the different methods used to obtain them. For more detail on the DSM extraction, see 
Baiocchi et al., 2013. In short, we performed the DSM extraction with PCI software and 
implemented Toutin’s rigorous model [Poli and Toutin, 2012]. We oriented the two across-
track stereopair images using a set of GCPs and CPs (Check Points). After that, observing 
the RMSE of GCPs and CPs while increasing the number of GCPs, we estimated both the 
precision and accuracy, which seemed to stabilise around 0.5 m – 1.0m of RMSE in the first 
case and 3.0 m –3.5 m of RMSE in the second. Following the DSM extraction, to validate 
the model, we compared the height of the spot points in the 1:5000 vectorial cartography of 
L’ Aquila with those in the obtained DSM. 

Classification results and collapses recognition 
To evaluate the classification results obtained with both algorithms and assess their accuracy, 
we decided to reference the existing buildings by using the 1:5000 scale cartography 
(“CartaTecnicaRegionale”, CTR), realised by the Abruzzo regional administration. The 
objects on the polygonal vectorial file of this cartography, identified in the associated 
database as buildings (e.g., “Religious buildings” and “Civil buildings”), were considered 
to be the only buildings existing in L’Aquila city before the main seismic event. Even if the 
cartography wasn’t updated after 2004, the urban changes occurring between the last update 
of the CTR and the acquisition of WorldView-2 image would be minor because L’Aquila 
is a historic city centre; thus, the construction of new buildings is forbidden. Moreover, 
the first phases of early damage assessment are usually conducted by Civil Protection, 
using the available cartography; in fact, these exact maps were used during the L’Aquila 
earthquake.
First of all, we compared the effectiveness of both classification algorithms and evaluated 
their respective results by comparing them to the buildings on the cartography. Collapsed 
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buildings were ignored because they are a very small portion of all the buildings in the historic 
centre. We also conducted other evaluations in the GIS (Q-GIS) environment. For example, 
we compared the areas of the buildings both on the CTR and from classifications algorithms 
(object-oriented and pixel-based) in order to evaluate the recognition percentage of the 
approaches used and their validity. The obtained results are reported in Tables 1 and 2. 

Table 1 - Comparison to official cartography (Object-oriented).

Buildings of cartography 
detected by classification 

Buildings of 
cartography Recognition percentage 

(m2) (m2) %

SUB_1 304648.2 328212.8 92.8

SUB_2 180655.6 198266.8 91.1

SUB_3 60202.1 72486.2 83.1

SUB_4 66550.6 77133.4 86.3

SUB_5 305229.8 324835.0 94.0

SUB_6 973265.6 1031172.2 94.4

SUB_7 56030.1 62386.9 89.8

SUB_8 80642.0 86255.0 93.5

SUB_9 157253.5 168111.4 93.5

Total 2184477.4 2348859.6 93.0

Table 2- Comparison to official cartography (Pixel-based).
Buildings of 

cartography detected by 
classification 

Buildings of 
cartography Recognition percentage 

(m2) (m2) %
SUB_1 179251.3 328212.8 54.6
SUB_2 58029.9 198266.8 29.3
SUB_3 32454.9 72486.2 44.8
SUB_4 115946.5 77133.4 60.3
SUB_5 247367.3 324835.0 76.2
SUB_6 692349.9 1031172.2 67.1
SUB_7 23907.2 62386.9 38.3
SUB_8 46206.7 862545.0 53.6
SUB_9 101974.5 168111.4 60.7
Total 1497488.4 2348859.6 63.8

Clearly, the object-oriented classification is more accurate and robust; it achieved a 
substantial recognition percentage (over 93%), whereas the pixel-based approach reached 
a percentage of 63%. The recognition percentage of the pixel-based approach for some 
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subsets seems to be exceedingly low, in fact, marking this approach as an ineffective means 
for buildings identification. For this reason, we decided to use only the results obtained 
with the object-oriented classification for the following analysis.
By overlapping the vectorial file of the buildings identified by the classification on the 
buildings of the CTR with those on the satellite image, we could immediately identify some 
collapses, such as that of Santa Maria Paganica Church (Fig. 13).

Figure 13 - The identified collapse of Santa Maria Paganica Church with classification.

A significant subset of the images was selected for subsequent experimentations, and based 
on this area, we made several calculations (Tab. 3):

1) The total number of buildings on the official cartography;
2) The number of buildings reported on CTR but not identified by the classification 

algorithms (these could be collapsed buildings after the earthquake);
3) The number of buildings identified by our classification algorithms but not present 

on CTR (If such buildings exist, they might be “new buildings,” erected after the 
cartography’s last update).

Table 3 - Results of collapses recognition: comparison between classification and cartography buildings.

Total number of buildings (classification and 
cartography) 756 100%

Buildings on cartography 751 99.3%

Buildings present on cartography but not 
identified by classification algorithms 9

Classification 
mistakes 6

1.2%Collapsed 
buildings 3

Buildings identified by classification 
algorithms but not present on cartography 14

Classification 
mistakes 9

1.85%Cartography 
limits 5

With regard to the third calculation, 9 probable “new buildings” were actually classification 
mistakes (the classification algorithms seem to incorrectly classify shadows or paved areas 
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as buildings because they share a similar radiometry to the roofs; Fig. 14) while 5 buildings 
were not present on the CTR. The latter buildings weren’t new because the area is a historic 
centre; most likely, they were not classified as ‘Buildings’ in the database linked to the 
official cartography.

Figure 14 - Classification mistakes; the algorithms (red 
color) classify some paved areas as buildings not present 
in CTR buildings (yellow color).

Regarding the 9 probable collapsed buildings identified by the classification, 3 were actually 
collapsed buildings (for example, Fig. 15) while the other 6 were classification mistakes; in this 
case, the algorithms may have assigned some buildings’ image objects to another category.

Figure 15 - Buildings collapsed and not identified by classification algorithms (red color)but reported 
on cartography (yellow color).
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One should note, however, that the identified collapsed buildings are the only buildings that really 
collapsed in the area.
The aim of this study was to complete the classification results with DSM information in order to 
achieve a more robust identification of collapsed buildings and to consider height differences of 
buildings before and after the earthquake. Thus, we calculated the difference between these two 
models and focused on the greatest differences (red color in Fig. 16) between the DSM height 
and that extracted from the cartography in polygon buildings, obtaining a model that provides 
information about the elevation where an edifice is present, but does not provide data about the 
elevation where no construction is present; in a certain way, this model can be considered as a 
“roof model.” This approach can be an improvement of the use of “normalised DSM” (nDSM) 
proposed by some authors [Weidner, 1997] and give more accurate results, but the weak point is 
that it can be used only when a large scale (1:10000 or better) vectorial cartography is available.

Figure 16 - Differences obtained between DSM from across track stereopair 
and roof model.

In the same subset of previous tests, the methodology reveals 6 possible collapses: 3 are actual 
collapses (for example, Fig. 17), whereas the remaining differences between pre- and post-
earthquake models are due to some misclassification. 
This methodology did report false detections of collapsed buildings, mainly because the particular 
shape and structure of some buildings were not properly depicted (Tab. 4) by the vectorial 
cartography used to obtain the model before the earthquake. The details in Figure 18 show the 
false detection of buildings with high height differences that are not collapsed. This is due to the 
fact that in Italy, 1:5000 scale maps represent the roofs as polygons with unique heights and flat 
surfaces; higher scale maps (e.g., 1:2000) are expected to include more complex roof shapes but, 
unfortunately, the 1:5000 scale maps offer the only altimetric documentation of the entire city 
centre of Italy; thus, they are the only sure source of altimetric information available for civil 
protection purposes.
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Figure 17 - The identified collapse of Santa Maria Paganica Church with height differences.

Figure 18 - Examples of false detection with the technique of height differences.
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Significantly, the 3 collapsed buildings that were detected with both methodologies, due 
to the radiometry and altimetry, are the only ones that could be visually detected. This 
consideration confirms the speculation that the proposed procedure is able to automatically 
detect, with considerable time saved, all collapsed buildings that could be optically identified. 
For this reason, it could be compared to the most diffused “early damage assessment” 
methodologies presently in use.

Table 4 - Results of collapses recognition: comparison between height information and cartography 
buildings.

Buildings with high differences of height between pre-and post-earthquake DSM 6

Building collapses 3

Methodology mistakes 3

We tried to better evaluate the accuracy of our methodologies by comparing their results to 
the actual verified damages detected by the Civil Protection and Fire Department operators 
after the event; In Italian, these inspections are called “Agibilità,” and the authors think 
a translation of this word can be “Fitness for human habitation,” because the result of 
every building inspection determines if the building is still usable for habitation or not. The 
results of this verification are available for free on the “Fitness for human habitation” map 
[Comune L’Aquila, 2013] (Fig. 19), which displays a representative subset of the image.

Figure 19 - The map of fitness for human habitation made by Civil Protection after 
the main seismic event.
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The results of these tests, performed in an open-source, GIS environment, and using “map 
algebra” algorithms, are shown in Table 5.

Table 5 - Results of collapses recognition: comparison with fitness for human habitation map.

Buildings classified as collapsed or seriously damaged in fitness for human habitation map 6

Building collapses 3

Buildings not totally collapsed but seriously damaged 3

Fitness for human habitation does not directly connect to the collapse of buildings; in fact, an 
edifice that has not collapsed can be useless for human habitation due to structural damages 
that can potentially lead to a collapse. We compared these two classifications because 
of the obvious correlation between them, although these are two conceptually different 
assessments. Also, this map offers the only available information on the field validation of 
the damage because admittance to the so called “Red zone,” the Zone of the historic centre 
most damaged by the event and for this reason inaccessible, is still logistically difficult.
Our methodology identifies only 3 collapsed buildings of the 6 classified as “very seriously 
damaged or collapsed” in the fitness for human habitation map of the same subset; most 
likely, the remaining 3 buildings are not totally collapsed, and for this reason, not visible on 
the WorldView-2 image. Indeed, a visual check of these buildings on the WorldView image 
confirmed that, on the image itself, there is no visual evidence of the collapse.

Conclusions and further development
This research showed that the use of a high-resolution, object-oriented classification 
image combined with difference-of-height data can accurately, quickly, and robustly 
detect changes in post-seismic scenarios. The object-oriented approach, in particular, 
seems much more accurate with 93% recognition, compared to the 64% recognition 
reported by the pixel-based classification. In this experimentation, in fact, all of the 
totally collapsed buildings were identified by the object-oriented approach. Some 
mistakes during the classification process could be avoided through an optimisation of 
the process and improved specialisation of the implemented rule-set. Since optimizing 
the DSM extraction from satellite stereopairs and obtaining even more accurate height 
information will improve the classification, deeper investigations must be conducted. 
Clearly, the proposed methodology must be tested more widely on this and other post 
seismic scenarios; nonetheless, this study determined that the detection of post-earthquake 
collapsed buildings can be substantially enhanced by combining these two techniques, 
resulting in a complete detection of observable collapsed buildings with no errors (from 
the studied subset). This methodology, therefore, could allow a first damage assessment 
to be performed quickly in a completely automated way through the use of remotely 
sensed data, thereby offering ready support for the emergency response activities carried 
out by humanitarian agencies (Boccardo et al., 2011).To achieve an effective application 
of such methodologies, a prearranged preparation of the necessary pre-event data is of 
strategic importance, as is the availability of high-performance hardware to quickly 
execute classification and DSM extraction in immediate post events.
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