17 research outputs found

    Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1

    Get PDF
    This work presents a study on mixed matrix membranes (MMMs) of the polymer of intrinsic microporosity PIM-1, embedding the crystalline Cr-terephthalate metal-organic framework (MOF), known as MIL-101. Different kinds of MIL-101 were used: MIL-101 with an average particle size of ca. 0.2 µm, NanoMIL-101 (ca. 50 nm), ED-MIL-101 (MIL-101 functionalized with ethylene diamine) and NH2-MIL-101 (MIL-101 synthesized using 2-aminoterephthalic acid instead of terephthalic acid). Permeability, diffusion and solubility coefficients and their corresponding ideal selectivities were determined for the gases He, H2, O2, N2, CH4 and CO2 on the “as-cast” samples and after alcohol treatment. The performance of the MMMs was evaluated in relation to the Maxwell model. The addition of NH2-MIL-101 and ED-MIL-101 does not increase the membrane performance for the CO2/N2 and CO2/CH4 separation because of an initial decrease in selectivity at low MOF content, whereas the O2 and N2 permeability both increase for NH2-MIL-101. In contrast, MIL-101 and NanoMIL-101 cause a strong shift to higher permeability in the Robeson diagrams for all gas pairs, especially for CO2, without significant change in selectivity. Unprecedented CO2 permeabilities up to 35,600 Barrer were achieved, which are among the highest values reached with PIM-1 based mixed matrix membranes. For various gas pairs, the permeability and selectivity were far above the Robeson upper bound after alcohol treatment. Short to medium time aging shows that alcohol treated samples with MIL-101 maintain a systematically higher permeability in time. Mixed gas permeation experiments on an aged as-cast sample with 47 vol% MIL-101 reveal that the MMM sample maintains an excellent combination of permeability and selectivity, far above the Robeson upper bound (CO2 = 3500–3800 Barrer, CO2/N2 = 25–27; CO2/CH4 = 21–24). This suggests good perspectives for these materials in thin film composite membranes for real applications.</p

    Biorefinery of olive leaves to produce dry oleuropein aglycone:use of homemade ceramic capillary biocatalytic membranes in a multiphase system

    Get PDF
    Oleuropein aglycone is an important antioxidant compound produced during oleuropein hydrolysis, not yet commercially available. Its production from renewable material by green processes is a challenge because it permits waste re-use and low environmental impact. In this work, homemade asymmetric capillary ceramic membranes were used to develop biocatalytic membranes, which were further used to produce oleuropein aglycone from olive leaves and/or commercial oleuropein. Results indicated that the biocatalytic system (containing covalently immobilized β-glucosidase) promotes the hydrolysis of oleuropein in both monophase and multiphase processes. Furthermore, the multiphase biocatalytic system enables the extraction of the hydrophobic oleuropein aglycone in an organic phase, before its rearrangement in water. This was achieved by the production, of an unstable water-in-oil emulsion (permeate side), on the basis of membrane emulsification process. The intensified biocatalytic/extractor system allowed taking shelter the hydrophobic compound in the organic phase with good efficiency (90%), protecting it from rearrangement

    Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    No full text
    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated

    Biorefinery of Tomato Leaves by Integrated Extraction and Membrane Processes to Obtain Fractions That Enhance Induced Resistance against Pseudomonas syringae Infection

    No full text
    Tomato leaves have been shown to contain significant amounts of important metabolites involved in protection against abiotic and biotic stress and/or possessing important therapeutic properties. In this work, a systematic study was carried out to evaluate the potential of a sustainable process for the fractionation of major biomolecules from tomato leaves, by combining aqueous extraction and membrane processes. The extraction parameters (temperature, pH, and liquid/solid ratio (L/S)) were optimized to obtain high amounts of biomolecules (proteins, carbohydrates, biophenols). Subsequently, the aqueous extract was processed by membrane processes, using 30–50 kDa and 1–5 kDa membranes for the first and second stage, respectively. The permeate from the first stage, which was used to remove proteins from the aqueous extract, was further fractionated in the second stage, where the appropriate membrane material was also selected. Of all the membranes tested in the first stage, regenerated cellulose membranes (RC) showed the best performance in terms of higher rejection of proteins (85%) and lower fouling index (less than 15% compared to 80% of the other membranes tested), indicating that they are suitable for fractionation of proteins from biophenols and carbohydrates. In the second stage, the best results were obtained by using polyethersulfone (PES) membranes with an NMWCO of 5 kDa, since the greatest difference between the rejection coefficients of carbohydrates and phenolic compounds was obtained. In vivo bioactivity tests confirmed that fractions obtained with PES 5 kDa membranes were able to induce plant defense against P. syringae

    Membrane Cascade Fractionation of Tomato Leaf Extracts—Towards Bio-Based Crop Protection

    No full text
    Promising initial results from the use of membrane-fractionated extracts of tomato leaf as crop protection agents have recently been reported. This paper provides additional evidence from larger scale experiments that identify an efficient pipeline for the separation of tomato leaf extracts to generate a fraction with significant defence elicitor activity. A UF tubular membrane 150 kDa, with an internal diameter of 5 mm, proved appropriate for initial extract clarification, whereas afterwards a UF 10 kDa and three NF membranes (200–800 Da) in sequence were evaluated for the subsequent fractionation of this tomato extract. The compositions of sugars, proteins and total biophenols were changed in these fractions with respect to the initial extract. The initial extract ratio of sugars: proteins: biophenols was 1:0.047:0.052, whereas for the retentate of the 800 Da NF membrane, which has the higher crop protection activity, this ratio was 1:0.06:0.1. In this regard, it appears that the main crop protection effect in this fraction was due to the sugars isolated. It was found that with the appropriate membrane cascade selection (UF 150 kDa, UF 10 kDa and NF 800 Da) it was possible to produce (easily and without the need of additional chemicals) a fraction that has significant activity as an elicitor of disease resistance in tomato, whereas the remaining fractions could be used for other purposes in a biorefinery. This is very promising for the wider application of the proposed approach for the relatively easy formulation of bio-based aqueous streams with bio-pesticide activities

    Agri-Food Industry Waste as Resource of Chemicals:The Role of Membrane Technology in Their Sustainable Recycling

    No full text
    The agri-food sector generates substantial quantities of waste material on farm and during the processing of these commodities, creating serious social and environmental problems. However, these wastes can be resources of raw material for the production of valuable chemicals with applications in various industrial sectors (e.g., food ingredients, nutraceuticals, bioderived fine chemicals, biofuels etc.). The recovery, purification and biotransformation of agri-food waste phytochemicals from this microbial spoilage-prone, complex agri-food waste material, requires appropriate fast pre-treatment and integration of various processes. This review provides a brief summary and discussion of the unique advantages and the importance of membrane technology in sustainable recycling of phytochemicals from some of the main agri-food sectors. Membrane-based pressure -driven processes present several advantages for the recovery of labile compounds from dilute streams. For example, they are clean technologies that can operate at low temperature (20–60 °C), have low energy requirements, there is no need for additional chemicals, can be quite automated and electrifiable, and have low space requirements. Based on their permselective properties based on size-, shape-, and charge-exclusion mechanisms, membrane-based separation processes have unpaired efficiency in fractionating biological components while presenting their properties. Pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), as well as other advanced membrane-based processes such as membrane bioreactors (MBR), membrane emulsification (ME) and membrane distillation (MD), are presented. The integration of various membrane technologies from the initial recovery of these phytochemicals (MF, UF, NF) to the final formulation (by ME) of commercial products is described. A good example of an extensively studied agri-food stream is the olive processing industry, where many different alternatives have been suggested for the recovery of biophenols and final product fabrication. Membrane process integration will deliver in the near future mature technologies for the efficient treatment of these streams in larger scales, with direct impact on the environmental protection and society (production of compounds with positive health effects, new job creation, etc.). It is expected that integration of these technologies will have substantial impact on future bio-based societies over forthcoming decades and change the way that these chemicals are currently produced, moving from petrochemical-based linear product fabrication to a sustainable circular product design based in agri-food waste biomass

    Membrane Cascade Fractionation of Tomato Leaf Extracts—Towards Bio-Based Crop Protection

    No full text
    Promising initial results from the use of membrane-fractionated extracts of tomato leaf as crop protection agents have recently been reported. This paper provides additional evidence from larger scale experiments that identify an efficient pipeline for the separation of tomato leaf extracts to generate a fraction with significant defence elicitor activity. A UF tubular membrane 150 kDa, with an internal diameter of 5 mm, proved appropriate for initial extract clarification, whereas afterwards a UF 10 kDa and three NF membranes (200–800 Da) in sequence were evaluated for the subsequent fractionation of this tomato extract. The compositions of sugars, proteins and total biophenols were changed in these fractions with respect to the initial extract. The initial extract ratio of sugars: proteins: biophenols was 1:0.047:0.052, whereas for the retentate of the 800 Da NF membrane, which has the higher crop protection activity, this ratio was 1:0.06:0.1. In this regard, it appears that the main crop protection effect in this fraction was due to the sugars isolated. It was found that with the appropriate membrane cascade selection (UF 150 kDa, UF 10 kDa and NF 800 Da) it was possible to produce (easily and without the need of additional chemicals) a fraction that has significant activity as an elicitor of disease resistance in tomato, whereas the remaining fractions could be used for other purposes in a biorefinery. This is very promising for the wider application of the proposed approach for the relatively easy formulation of bio-based aqueous streams with bio-pesticide activities

    Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties

    No full text
    Drug-loaded poly (vinyl alcohol) (PVA)-based microparticles have been synthetized by using membrane emulsification and chemical cross-linking. The encapsulation of two water-soluble molecules, catechol (CA) and diclofenac sodium (DS), has been considered as case studies. PVA hydrogels have been recognized as promising biomaterials and suitable candidates for drug delivery. However, the encapsulation of hydrophilic, low molecular weight drugs in particulate materials is currently an ambitious goal. The purpose of this work was to develop high-drug loading systems for hydrophilic molecule delivery based on uniformly distributed particulate carriers. Membrane emulsification has been used as advanced manufacturing method to design drug-loaded PVA microparticles with target properties in terms of particle size, particle size distribution, structure and functional activity. A special emphasis is laid on the important factors that contribute to tune the structured properties of microparticles, encapsulation efficiency/drug loading and drug delivery. In particular, the influence of emulsification method (membrane and homogenizing approaches), phase compositions (PVA concentration, drug concentration, physicochemical properties of drug), cross-linking reaction conditions (cross-linking agent concentration, acidic media) has been studied. Finally, the potential of PVA-based microparticles as drug delivery carriers as well as their in vitro cytotoxicity have been evaluated.The authors acknowledge for the financial support the project PON01_01545, Olio più, within the framework PON Ricerca e Competitività 2007-2013.Peer reviewe

    A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation

    No full text
    A highly gas-permeable polymer with enhanced selectivities is prepared using spirobifluorene as the main structural unit. The greater rigidity of this polymer of intrinsic microporosity (PIM-SBF) facilitates gas permeability data that lie above the 2008 Robeson upper bound, which is the universal performance indicator for polymer gas separation membranes
    corecore