10 research outputs found

    Determination of vegetation cover index under different soil management systems of cover plants by using an unmanned aerial vehicle with an onboard digital photographic camera

    Get PDF
    The permanent monitoring of vegetation cover is important to guarantee a sustainable management of agricultural activities, with a relevant role in the reduction of water erosion. This monitoring can be carried out through different indicators such as vegetation cover indices. In this study, the vegetation cover index was obtained using uncalibrated RGB images generated from a digital photographic camera on an unmanned aerial vehicle (UAV). In addition, a comparative study with 11 vegetation indices was carried out. The vegetation indices CIVE and EXG presented a better performance and the index WI presented the worst performance in the vegetation classification during the cycles of jack bean and millet, according to the overall accuracy and Kappa coefficient. Vegetation indices were effective tools in obtaining soil cover index when compared to the standard Stocking method, except for the index WI. Architecture and cycle of millet and jack bean influenced the behavior of the studied vegetation indices. Vegetation indices generated from RGB images obtained by UAV were more practical and efficient, allowing a more frequent monitoring and in a wider area during the crop cycle

    Hybrid kriging methods for interpolating sparse river bathymetry point data

    Get PDF
    Terrain models that represent riverbed topography are used for analyzing geomorphologic changes, calculating water storage capacity, and making hydrologic simulations. These models are generated by interpolating bathymetry points. River bathymetry is usually surveyed through cross-sections, which may lead to a sparse sampling pattern. Hybrid kriging methods, such as regression kriging (RK) and co-kriging (CK) employ the correlation with auxiliary predictors, as well as inter-variable correlation, to improve the predictions of the target variable. In this study, we use the orthogonal distance of a (x, y) point to the river centerline as a covariate for RK and CK. Given that riverbed elevation variability is abrupt transversely to the flow direction, it is expected that the greater the Euclidean distance of a point to the thalweg, the greater the bed elevation will be. The aim of this study was to evaluate if the use of the proposed covariate improves the spatial prediction of riverbed topography. In order to asses such premise, we perform an external validation. Transversal cross-sections are used to make the spatial predictions, and the point data surveyed between sections are used for testing. We compare the results from CK and RK to the ones obtained from ordinary kriging (OK). The validation indicates that RK yields the lowest RMSE among the interpolators. RK predictions represent the thalweg between cross-sections, whereas the other methods under-predict the river thalweg depth. Therefore, we conclude that RK provides a simple approach for enhancing the quality of the spatial prediction from sparse bathymetry data

    Assessing Water Erosion Processes in Degraded Area Using Unmanned Aerial Vehicle Imagery

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) and Structure from Motion (SfM) techniques can contribute to increase the accessibility, accuracy, and resolution of Digital Elevation Models (DEMs) used for soil erosion monitoring. This study aimed to evaluate the use of four DEMs obtained over a year to monitor erosion processes in an erosion-degraded area, with occurrence of rill and gully erosions, and its correlation with accumulated rainfall during the studied period. The DEMs of Geomorphic Change Detection (GCD) of horizontal and vertical resolutions of 0.10 and 0.06 m were obtained. It was possible to detect events of erosion and deposition volumes of the order of 2 m3, with a volumetric error of ~50 %, in rills and gullies in the initial stage denominated R and GS-I, respectively. Events of the order of 100 m3, with a volumetric error around 14 % were found for advanced gullies, a segment denominated GS-II. In the three studied erosion situations, the deposition volume increased with the accumulated rainfall. The segments R and GS-I presented an inverse relationship between erosion volume and accumulated rainfall during the studied period. This behaviour can be explained by the dynamics of the deposition and erosion volumes during the erosion process. In the GS-II segment, erosion and deposition volumes were proportional and a direct relation with the cumulative rainfall over the studied period and a low percentage of volumetric error were found

    Mapeamento da cobertura vegetal a partir de imagens de alta resolução obtidas por VANT

    Get PDF
    Veículos Aéreos Não Tripulados ou Drones estão em uso crescente nos estudos ambientais, permitindo a coleta dados precisos para mapeamento e monitoramento da paisagem. Contudo, foram pouco explorados nos estudos de cobertura vegetal e monitoramento florestal. Portanto, esta pesquisa visou mapear a cobertura vegetal de uma área experimental com: Drone Phantom 3 Professional, 150 pontos de classificação da vegetação e 4 índices de cobertura vegetal, no espectro visível. Para tanto, foram realizados levantamentos de campo, para validação do aerolevantamento. Os resultados demonstraram a necessidade de melhorar os estudos dos índices de vegetação no visível, pois foi detectada dificuldades de distinção dos diferentes tipos de vegetação da área pelos índices selecionados. Assim, as alternativas para resolução do problema seriam: avaliação sazonal das respostas espectrais, uso de sensores infravermelhos e novos índices do espectro visível e do visível conjugado com o infravermelho, para validação do método de estudo

    Evaluation of Synthetic-Temporal Imagery as an Environmental Covariate for Digital Soil Mapping: A Case Study in Soils under Tropical Pastures

    No full text
    Digital soil maps are paramount for supporting environmental process analysis, planning for the conservation of ecosystems, and sustainable agriculture. The availability of dense time series of surface reflectance data provides valuable information for digital soil mapping (DSM). A detailed soil survey, along with a stack of Landsat 8 SR data and a rainfall time series, were analyzed to evaluate the influence of soil on the temporal patterns of vegetation greenness, assessed using the normalized difference vegetation index (NDVI). Based on these relationships, imagery depicting land surface phenology (LSP) metrics and other soil-forming factors proxies were evaluated as environmental covariates for DSM. The random forest algorithm was applied as a predictive model to relate soils and environmental covariates. The study focused on four soils typical of tropical conditions under pasture cover. Soil parent material and topography covariates were found to be similarly important to LSP metrics, especially those LSP images related to the seasonal availability of water to plants, registering significant contributions to the random forest model. Stronger effects of rainfall seasonality on LSP were observed for the Red Latosol (Ferralsol). The results of this study demonstrate that the addition of temporal variability of vegetation greenness can be used to assess soil subsurface processes and assist in DSM

    Hybrid kriging methods for interpolating sparse river bathymetry point data

    No full text
    ABSTRACT Terrain models that represent riverbed topography are used for analyzing geomorphologic changes, calculating water storage capacity, and making hydrologic simulations. These models are generated by interpolating bathymetry points. River bathymetry is usually surveyed through cross-sections, which may lead to a sparse sampling pattern. Hybrid kriging methods, such as regression kriging (RK) and co-kriging (CK) employ the correlation with auxiliary predictors, as well as inter-variable correlation, to improve the predictions of the target variable. In this study, we use the orthogonal distance of a (x, y) point to the river centerline as a covariate for RK and CK. Given that riverbed elevation variability is abrupt transversely to the flow direction, it is expected that the greater the Euclidean distance of a point to the thalweg, the greater the bed elevation will be. The aim of this study was to evaluate if the use of the proposed covariate improves the spatial prediction of riverbed topography. In order to asses such premise, we perform an external validation. Transversal cross-sections are used to make the spatial predictions, and the point data surveyed between sections are used for testing. We compare the results from CK and RK to the ones obtained from ordinary kriging (OK). The validation indicates that RK yields the lowest RMSE among the interpolators. RK predictions represent the thalweg between cross-sections, whereas the other methods under-predict the river thalweg depth. Therefore, we conclude that RK provides a simple approach for enhancing the quality of the spatial prediction from sparse bathymetry data

    Spatial Distribution of Annual and Monthly Rainfall Erosivity in the Jaguarí River Basin

    No full text
    <div><p>ABSTRACT The Jaguarí River Basin forms the main water supply sources for the São Paulo Metropolitan Region and other cities in the state. Since the kinetic energy of rainfall is the driving force of water erosion, the main cause of land and water degradation, we tested the hypothesis of correlation between the erosive potential of rainfall (erosivity) and geographical coordinates and altitude for the purpose of predicting the spatial and temporal distribution of the rainfall erosivity index (EI30) in the basin. An equation was used to estimate the (EI30) in accordance with the average monthly and total annual rainfall at rainfall stations with data available for the study area. In the regression kriging technique, the deterministic part was modeled using multiple linear regression between the dependent variable (EI30) and environmental predictor variables: latitude, longitude, and altitude. From the result of equations and the maps generated, a direct correlation between erosivity and altitude could be observed. Erosivity has a markedly seasonal behavior in accordance with the rainy season from October to March. This season concentrates 86 % of the estimated EI30 values, with monthly maximum values of up to 2,342 MJ mm ha-1 h-1 month-1 between December and January, and minimum of 34 MJ mm ha-1 h-1 month-1 in August. The highest values were found in the Mantiqueira Range region (annual average of up to 12,000 MJ mm ha-1 h-1), a region that should be prioritized in soil and water conservation efforts. From this validation, good precision and accuracy of the model was observed for the long period of the annual average, which is the main factor used in soil loss prediction models.</p></div

    Hybrid kriging methods for interpolating sparse river bathymetry point data

    No full text
    ABSTRACT Terrain models that represent riverbed topography are used for analyzing geomorphologic changes, calculating water storage capacity, and making hydrologic simulations. These models are generated by interpolating bathymetry points. River bathymetry is usually surveyed through cross-sections, which may lead to a sparse sampling pattern. Hybrid kriging methods, such as regression kriging (RK) and co-kriging (CK) employ the correlation with auxiliary predictors, as well as inter-variable correlation, to improve the predictions of the target variable. In this study, we use the orthogonal distance of a (x, y) point to the river centerline as a covariate for RK and CK. Given that riverbed elevation variability is abrupt transversely to the flow direction, it is expected that the greater the Euclidean distance of a point to the thalweg, the greater the bed elevation will be. The aim of this study was to evaluate if the use of the proposed covariate improves the spatial prediction of riverbed topography. In order to asses such premise, we perform an external validation. Transversal cross-sections are used to make the spatial predictions, and the point data surveyed between sections are used for testing. We compare the results from CK and RK to the ones obtained from ordinary kriging (OK). The validation indicates that RK yields the lowest RMSE among the interpolators. RK predictions represent the thalweg between cross-sections, whereas the other methods under-predict the river thalweg depth. Therefore, we conclude that RK provides a simple approach for enhancing the quality of the spatial prediction from sparse bathymetry data
    corecore