11 research outputs found

    Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated with Tissue Damage in Malaria

    Get PDF
    Neutrophils are the most abundant leukocyte population in the bloodstream, the primary compartment of Plasmodium sp. infection. However, the role of these polymorphonuclear cells in mediating either the resistance or the pathogenesis of malaria is poorly understood. We report that circulating neutrophils from malaria patients are highly activated, as indicated by a strong type I interferon transcriptional signature, increased expression of surface activation markers, enhanced release of reactive oxygen species and myeloperoxidase, and a high frequency of low-density granulocytes. The activation of neutrophils was associated with increased levels of serum alanine and aspartate aminotransferases, indicating liver damage. In a rodent malaria model, we observed intense recruitment of neutrophils to liver sinusoids. Neutrophil migration and IL-1beta and chemokine expression as well as liver damage were all dependent on type I interferon signaling. The data suggest that type I interferon signaling has a central role in neutrophil activation and malaria pathogenesis

    Neutrophil Paralysis in Plasmodium vivax Malaria

    Get PDF
    Plasmodium vivax is responsible for approximately 60–80% of the malaria cases in the world, and contributes to significant social and economic instability in the developing countries of Latin America and Asia. The pathogenesis of P. vivax malaria is a consequence of host derived inflammatory mediators. Hence, a better understanding of the mechanisms involved in induction of systemic inflammation during P. vivax malaria is critical for the clinical management and prevention of severe disease. The innate immune receptors recognize Plasmodium sp. and initiate a broad spectrum of host defense mechanisms that mediate resistance to infection. However, the innate immune response is the classic “two-edged sword”, and clinical malaria is associated with high levels of circulating pro-inflammatory cytokines. Our findings show that both monocytes and neutrophils are highly activated during malaria. Monocytes produced high levels of IL-1β, IL-6 and TNF-α during acute malaria. On the other hand, neutrophils were a poor source of cytokines, but displayed an enhanced phagocytic activity and superoxide production. Unexpectedly, we noticed an impaired chemotaxis of neutrophils towards an IL-8 (CXCL8) gradient. We proposed that neutrophil paralysis is in part responsible for the enhanced susceptibility to bacterial infection observed in malaria patients

    Influence of point variants of pattern recognition receptors in the susceptibility to human malaria

    No full text
    Malária é uma das principais causas de doença e morte no mundo, principalmente de crianças. É considerada a força de seleção evolucionária mais forte que se conhece na história recente do genoma humano. Além dos fatores ambientais e do próprio parasito, fatores genéticos do hospedeiro têm um papel fundamental tanto na suscetibilidade como na evolução clínica da infecção. O sistema imune inato reconhece os plasmódios através de um número limitado de receptores de reconhecimento padrão (PRRs) e inicia vários mecanismos de defesa que resultam no desenvolvimento de inflamação e resistência do hospedeiro à infecção. Mas, a eliminação completa do parasito requer respostas imunes adaptativas que são amplificadas pela ativação do sistema imune inato. As manifestações clínicas de malária são dependentes dos níveis de citocinas próinflamatórias circulantes produzidas, as quais em níveis altos contribuem para a imunopatologia da doença. O balanço entre respostas pró e antiinflamatórias dirigidas contra o parasito é considerado crítico para a proteção clínica, assim a resposta imune inata pode contribuir tanto para proteção da malária como para modular a resposta imune adaptativa. Neste estudo, nós investigamos polimorfismos de um único nucleotídeo (SNP) dos genes de três PRRs: TLR, MBL e CR1 de indivíduos infectados por Plasmodium e residentes em áreas endêmicas de malária no Brasil. Os SNPs TLR1 (I602S), TLR4 (D229G), TLR6 (S249P), TLR9 (T-1237C/ -1486C), MBL [exon 1 nos códons 52, 54, e 57 (MBL2*A ou D, A ou B e A ou C, respectivamente); na região do promotor na posição -221 (*X ou *Y); e na posição +4 da região não traduzida (*P ou *Q)] e CR-1(C5507G) foram determinados por PCR-RFLP. Nós observamos associações entre os polimorfismos TLR1 I602S, TLR6 S249P e da região não traduzida +4 (*Q) e manifestações clínicas de malária e entre os polimorfismos TLR9 T-1486C, TLR T-1237C, MBL*D (códon 52) e do diplótipo de produção insuficiente de MBL (XA+O/O) e parasitemias mais altas. Nenhuma associação foi observada entre o polimorfismo CR-1 C5507G e manifestações clínicas de malária ou com parasitemia. Ao analisarmos juntos os polimorfismos de MBL e TLR, observamos que indivíduos com diplótipo de produção suficiente de MBL (YA/YA+YA/XA+YA/O+XA/XA) TLR1 I602S tinham menos manifestações clínicas de malária e indivíduos com diplótipo de produção suficiente de MBL e não carreadores do alelo TLR9 -1486C tinham parasitemias mais baixas do que os indivíduos com diplótipo de produção insuficiente de MBL e carreadores dos alelos variantes de TLR1 I602S e TLR9 -1486C, respectivamente. Juntos, nossos dados indicam que polimorfismos do promotor de TLR-9 e os diplótipos de produção insuficiente de MBL (XA+O/O) devem de algum modo controlar o nível de parasitemia por plasmódios enquanto a deficiência de TLR1 parece predispor para a presença de manifestações clínicas de malária. Também, podemos sugerir que existe uma cooperação entre TLR1, TLR9 e MBL na ativação da resposta imune inata na malária. Estes achados genéticos devem contribuir para o entendimento da patogênese da malária e levantar uma questão potencialmente interessante que é digna de investigações posteriores em outras populações a fim de validar a contribuição genética destes loci na patogênese da maláriaMalaria is one of the major causes of disease and death worldwide, mainly of children. It is also the strongest known force for evolutionary selection in the recent history of the human genome. Besides environmental and parasite factors, host genetic factors play a major role in determining both susceptibility to malaria and the course of infection. Innate immune mechanisms directed against Plasmodium parasites both contribute to protection from malaria and modulate adaptive immune responses. The innate immune system recognizes Plasmodium via a limited number of pattern-recognition receptors (PRRs) and initiates a broad spectrum of defense mechanisms that result in the development of inflammation and host resistance to infection. But, the complete control of the infection requires adaptive immune responses; and the innate immune system is also very efficient in instructing the cellular mediators of adaptive immunity to lead a powerful additional strike force against the parasite. Clinical malaria is characterized by high levels of circulating proinflammatory cytokines, which are thought to contribute to the immunopathology of the disease. The balance between pro- and anti-inflammatory responses toward the parasite is considered critical for clinical protection. The innate immune system initiates and thus sets the threshold of immune responses. In this study, we investigated single nucleotide polymorphisms (SNP) in the genes of three PRRs: TLR, MBL and CR1 in Plasmodium-infected individuals living in endemic areas of Brazil. The SNPs TLR1 (I602S), TLR4 (D229G), TLR6 (S249P), TLR9 (T-1237C/ -1486C), MBL [in the coding sequence of exon 1 at codons 52, 54, and 57 (MBL2*A or D, A or B, and A or C, respectively); in the promoter region at position -221 (*X or *Y); and in the untranslated sequence at position +4 (*P or *Q)] and CR-1(C5507G) were determined by PCR-RFLP. We observed associations of the TLR1 I602S, TLR6 S249P and untranslated sequence at position +4 MBL (*Q) variants with clinical manifestations of malaria and of the TLR9 T-1486C, TLR9 T-1237C, MBL2*D and MBL-insufficient diplotype (XA+O/O) with higher parasitemias. No association was observed to the CR-1 C5507G ) and clinical manifestations of malaria or parasitemia. Also, we observed that individuals with MBLsufficient haplotype (YA/YA+YA/XA+YA/O+XA/XA) and not bearing the allele TLR1 I602S had less clinical manifestations of malaria and individuals with MBL-sufficient haplotype and not bearing TLR9 -1486C had lower parasitemias when compared to individuals with MBL-insufficient diplotype and bearing the variant alleles TLR1 I602S and TLR9 -1486C, respectively. Altogether, our data indicate that TLR-9 promoter and MBL-insufficient haplotype (XA+O/O) polymorphisms to some extent may control the level of Plasmodium parasitemia while TLR1 deficiency seems to predispose to mild malaria. Also, they could suggest cooperation among TLR1, TLR9 and MBL in the immune response against malaria. These genetic findings may contribute to the understanding of the pathogenesis of malaria and raise a potentially interesting issue that is worthy of further investigation in other population in order to validate the genetics contribution of these loci to the pathogenesis of malari

    Humoral immune response in human malaria : quantity and quality of anti-Plasmodium falciparum antibodies

    No full text
    Neste estudo avaliamos a resposta imune humoral de indivíduos naturalmente expostos à malária em áreas endêmicas no Brasil. Os anticorpos IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgE e IgA anti-formas eritrocitárias de Plasmodium falciparum foram determinadas por ELISA. Anticorpos IgG, IgG1, IgG2 de alta avidez e IgG3 de baixa avidez predominaram nos indivíduos sem complicações de malária ou assintomáticos, enquanto anticorpos IgG4, IgE e IgM predominaram nos indivíduos com complicações clínicas por malária. Os resultados mostram que mesmo em regiões com transmissão instável de malária pode ser observado o desenvolvimento de imunidade protetora quando anticorpos apropriados são produzidosIn this study, we have evaluated the humoral immune response of individuals naturally exposed to malaria living in endemic areas of Brazil. We determined IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgE and IgA antibodies against Plasmodium falciparum blood stages by ELISA. We observed that the level of high avidity IgG, IgG1 and IgG2 and low avidity IgG3 antibodies were higher in asymptomatic individuals or with uncomplicated malaria, while IgG4, IgE and IgM antibodies were higher in individuals with complicated malaria. Taken together the results showed that even in unstable malaria regions it can be observed the development of protective immunity against malaria when appropriate antibodies are produce

    The Contribution of Immune Evasive Mechanisms to Parasite Persistence in Visceral Leishmaniasis

    Get PDF
    Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2016-10-14T17:56:11Z No. of bitstreams: 1 Freitas EO The contribution of immune....pdf: 180876 bytes, checksum: b436cd5f02b61a94684e792434a8f12d (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2016-10-14T18:13:47Z (GMT) No. of bitstreams: 1 Freitas EO The contribution of immune....pdf: 180876 bytes, checksum: b436cd5f02b61a94684e792434a8f12d (MD5)Made available in DSpace on 2016-10-14T18:13:47Z (GMT). No. of bitstreams: 1 Freitas EO The contribution of immune....pdf: 180876 bytes, checksum: b436cd5f02b61a94684e792434a8f12d (MD5) Previous issue date: 2016CNPq e FAPERJUniversity of Oxford. The Jenner Institute. Oxford, UKUniversity of Oxford. The Jenner Institute. Oxford, UKUniversidade Federal do Rio de Janeiro. Instituto de Biofísica Carlos Chagas Filho. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Laboratorio de Biologia do Sistema Imune. Instituto de Microbiologia. Departmento de Imunologia. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Laboratório Integrado de Microbiologia e Imunoregulação. Salvador, BA, BrasilLeishmania is a genus of protozoan parasites that give rise to a range of diseases called Leishmaniasis that affects annually an estimated 1.3 million people from 88 countries. Leishmania donovani and Leishmania (L.) infantum chagasi are responsible to cause the visceral leishmaniasis. The parasite can use assorted strategies to interfere with the host homeostasis to establish persistent infections that without treatment can be lethal. In this review, we highlight the mechanisms involved in the parasite subversion of the host protective immune response and how alterations of host tissue physiology and vascular remodeling during VL could affect the organ-specific immunity against Leishmania parasites

    An unexpected protective role of low-affinity allergen-specific IgG through the inhibitory receptor FcγRIIb.

    No full text
    BACKGROUND Induction of allergen-specific IgG antibodies is a critical parameter for successful allergen-specific immunotherapy. IgG antibodies can inhibit IgE-mediated mast cell activation through direct allergen neutralization or through the inhibitory receptor FcγRIIb. The affinity of IgE antibodies to the allergen has been shown to be critical for cellular activation. OBJECTIVE Here we addressed the question of affinity thresholds of allergen-specific IgG antibodies for inhibition of mast cell activation using 2 different mAbs against the major cat allergen Fel d 1 both in vitro and in vivo in mice. METHODS Sequences of the 2 high-affinity mAbs were back-mutated to germline, resulting in low-affinity (10 mol/L) antibodies of the exact same specificity. RESULTS Using these newly generated recombinant antibodies, we demonstrate that low-affinity antibodies are still able to inhibit mast cell activation through FcγRIIb but do not neutralize the allergen. CONCLUSION Antibody affinity dictates the mechanism of mast cell inhibition, and IgG antibodies triggering the inhibitory FcγRIIb pathway can show a broader cross-reactivity pattern than previously thought. This indicates that allergen-specific immunotherapy generates a larger protective umbrella of inhibitory IgG antibodies than previously appreciated

    Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated with Tissue Damage in Malaria

    No full text
    Neutrophils are the most abundant leukocyte population in the bloodstream, the primary compartment of Plasmodium sp. infection. However, the role of these polymorphonuclear cells in mediating either the resistance or the pathogenesis of malaria is poorly understood. We report that circulating neutrophils from malaria patients are highly activated, as indicated by a strong type I interferon transcriptional signature, increased expression of surface activation markers, enhanced release of reactive oxygen species and myeloperoxidase, and a high frequency of low-density granulocytes. The activation of neutrophils was associated with increased levels of serum alanine and aspartate aminotransferases, indicating liver damage. In a rodent malaria model, we observed intense recruitment of neutrophils to liver sinusoids. Neutrophil migration and IL-1β and chemokine expression as well as liver damage were all dependent on type I interferon signaling. The data suggest that type I interferon signaling has a central role in neutrophil activation and malaria pathogenesis.status: publishe

    Evaluation of Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites as a Preerythrocytic P. vivax Vaccine.

    Get PDF
    Four different vaccine platforms, each targeting the human malaria parasite Plasmodium vivax cell-traversal protein for ookinetes and sporozoites (PvCelTOS), were generated and assessed for protective efficacy. These platforms consisted of a recombinant chimpanzee adenoviral vector 63 (ChAd63) expressing PvCelTOS (Ad), a recombinant modified vaccinia virus Ankara expressing PvCelTOS (MVA), PvCelTOS conjugated to bacteriophage Qβ virus-like particles (VLPs), and a recombinant PvCelTOS protein expressed in eukaryotic HEK293T cells (protein). Inbred BALB/c mice and outbred CD-1 mice were immunized using the following prime-boost regimens: Ad-MVA, Ad-VLPs, and Ad-protein. Protective efficacy against sporozoite challenge was assessed after immunization using a novel chimeric rodent Plasmodium berghei parasite (Pb-PvCelTOS). This chimeric parasite expresses P. vivax CelTOS in place of the endogenous P. berghei CelTOS and produces fully infectious sporozoites. A single Ad immunization in BALB/c and CD-1 mice induced anti-PvCelTOS antibodies which were boosted efficiently using MVA, VLP, or protein immunization. PvCelTOS-specific gamma interferon- and tumor necrosis factor alpha-producing CD8+ T cells were induced at high frequencies by all prime-boost regimens in BALB/c mice but not in CD-1 mice; in CD-1 mice, they were only marginally increased after boosting with MVA. Despite the induction of anti-PvCelTOS antibodies and PvCelTOS-specific CD8+ T-cell responses, only low levels of protective efficacy against challenge with Pb-PvCelTOS sporozoites were obtained using any immunization strategy. In BALB/c mice, no immunization regimens provided significant protection against a Pb-PvCelTOS chimeric sporozoite challenge. In CD-1 mice, modest protective efficacy against challenge with chimeric P. berghei sporozoites expressing either PvCelTOS or P. falciparum CelTOS was observed using the Ad-protein vaccination regimen

    High levels IL-1β IL-6, IL-8 and IL-10 in plasma from patients infected with <i>P. vivax</i>.

    No full text
    <p>The cytokines IL-8 (CXCL8), IL-1β, IL-6, IL-10, TNF-α were measured in the plasma of <i>P. vivax</i>-infected subjects (n = 26), before (closed circles) and 30–45 days after treatment (open circles). Dotted lines represent medians of given measurements from healthy donors (HD; n = 13). Levels of cytokines were measured employing the Cytometric Bead Array (CBA). Significant differences are indicated with <i>p</i>-values using Wilcoxon signed rank test when the data failed the normality test.</p

    Neutrophils from <i>P. vivax</i>-infected patients produce high levels of superoxide and display enhanced phagocytic function.

    No full text
    <p>Neutrophils were isolated from <i>P. vivax</i>-infected patients (closed circles; n = 15) or healthy donors (open circles; n = 15), and the frequencies of neutrophils reducing NBT (left panel) as well as cell containing zymosan (right panel) were quantified. Significant differences are indicated with <i>p</i>-values using unpaired t test or Mann-Whitney test when a normality test failed.</p
    corecore