24 research outputs found

    New insights into the biological role of mammalian ADARs; the RNA editing proteins

    Get PDF
    The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases

    The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs

    Get PDF
    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein function

    A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe

    Get PDF
    Background Antimicrobial resistance is a global threat, which requires novel intervention strategies, for which priority pathogens and settings need to be determined. Objectives We evaluated pathogen-specific excess health burden of drug-resistant bloodstream infections (BSIs) in Europe. Methods A systematic review and meta-analysis. Data sources MEDLINE, Embase, and grey literature for the period January 1990 to May 2022. Study eligibility criteria Studies that reported burden data for six key drug-resistant pathogens: carbapenem-resistant (CR) Pseudomonas aeruginosa and Acinetobacter baumannii, third-generation cephalosporin or CR Escherichia coli and Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Excess health outcomes compared with drug-susceptible BSIs or uninfected patients. For MRSA and third-generation cephalosporin E. coli and K. pneumoniae BSIs, five or more European studies were identified. For all others, the search was extended to high-income countries. Participants Paediatric and adult patients diagnosed with drug-resistant BSI. Interventions Not applicable. Assessment of risk of bias An adapted version of the Joanna-Briggs Institute assessment tool. Methods of data synthesis Random-effect models were used to pool pathogen-specific burden estimates. Results We screened 7154 titles, 1078 full-texts and found 56 studies on BSIs. Most studies compared outcomes of drug-resistant to drug-susceptible BSIs (46/56, 82.1%), and reported mortality (55/56 studies, 98.6%). The pooled crude estimate for excess all-cause mortality of drug-resistant versus drug-susceptible BSIs ranged from OR 1.31 (95% CI 1.03–1.68) for CR P. aeruginosa to OR 3.44 (95% CI 1.62–7.32) for CR K. pneumoniae. Pooled crude estimates comparing mortality to uninfected patients were available for vancomycin-resistant Enterococcus and MRSA BSIs (OR of 11.19 [95% CI 6.92–18.09] and OR 6.18 [95% CI 2.10–18.17], respectively). Conclusions Drug-resistant BSIs are associated with increased mortality, with the magnitude of the effect influenced by pathogen type and comparator. Future research should address crucial knowledge gaps in pathogen- and infection-specific burdens to guide development of novel interventions

    A systematic review on the excess health risk of antibiotic-resistant bloodstream infections for six key pathogens in Europe

    Get PDF
    Background: Antimicrobial resistance is a global threat, which requires novel intervention strategies, for which priority pathogens and settings need to be determined. Objectives: We evaluated pathogen-specific excess health burden of drug-resistant bloodstream infections (BSIs) in Europe. Methods: A systematic review and meta-analysis. Data sources: MEDLINE, Embase, and grey literature for the period January 1990 to May 2022. Study eligibility criteria: Studies that reported burden data for six key drug-resistant pathogens: carbapenem-resistant (CR) Pseudomonas aeruginosa and Acinetobacter baumannii, third-generation cephalosporin or CR Escherichia coli and Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Excess health outcomes compared with drug-susceptible BSIs or uninfected patients. For MRSA and third-generation cephalosporin E. coli and K. pneumoniae BSIs, five or more European studies were identified. For all others, the search was extended to high-income countries. Participants: Paediatric and adult patients diagnosed with drug-resistant BSI. Interventions: Not applicable. Assessment of risk of bias: An adapted version of the Joanna-Briggs Institute assessment tool. Methods of data synthesis: Random-effect models were used to pool pathogen-specific burden estimates. Results: We screened 7154 titles, 1078 full-texts and found 56 studies on BSIs. Most studies compared outcomes of drug-resistant to drug-susceptible BSIs (46/56, 82.1%), and reported mortality (55/56 studies, 98.6%). The pooled crude estimate for excess all-cause mortality of drug-resistant versus drug-susceptible BSIs ranged from OR 1.31 (95% CI 1.03–1.68) for CR P. aeruginosa to OR 3.44 (95% CI 1.62–7.32) for CR K. pneumoniae. Pooled crude estimates comparing mortality to uninfected patients were available for vancomycin-resistant Enterococcus and MRSA BSIs (OR of 11.19 [95% CI 6.92–18.09] and OR 6.18 [95% CI 2.10–18.17], respectively). Conclusions: Drug-resistant BSIs are associated with increased mortality, with the magnitude of the effect influenced by pathogen type and comparator. Future research should address crucial knowledge gaps in pathogen- and infection-specific burdens to guide development of novel interventions

    Structural studies of RNA-binding domains

    No full text
    RNA is a versatile molecule with a central role in many biological processes. RNAs are rarely found in isolation in the cells. Rather, they associate with RNA-binding proteins (RBPs) to form ribonucleoproteins (RNPs). Typically, RBPs are characterized by a modular domain organization, and most of them consist of only a few basic RNA-binding domains (RBDs) repeated in tandem. To carry out their multiplicity of functions, RBDs use a range of binding modes to interact with a variety of RNA structures. In the present thesis, functional and structural studies of two RBDs, was carried out: the double-strand RNA binding Domain (dsRBD) of the Adenosine Deaminase Acting on RNA (ADAR) enzymes, and the RNA Recognition Motifs (RRMs) contained in the SMRT/HDAC1 Associated Repressor Protein (SHARP). This study provides new insights into RNA-protein interactions, and it contributes and enriches the already extended repertoire of the RBDs recognition modes

    The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs

    No full text
    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Ă… resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions

    Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells

    Get PDF
    In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways

    The antimicrobial resistance travel tool, an interactive evidence-based educational tool to limit antimicrobial resistance spread

    No full text
    Background: International travel has been recognized as a risk factor contributing to the spread of antimicrobial resistance (AMR). However, tools focused on AMR in the context of international travel and designed to guide decision making are limited. We aimed at developing an evidence-based educational tool targeting both healthcare professionals (HCPs) and international travellers to help prevent the spread of AMR. Methods: A literature review on 12 antimicrobial-resistant bacteria (ARB) listed as critical and high tiers in the WHO Pathogen Priority List covering four key-areas was carried out: AMR surveillance data; epidemiological studies reporting ARB prevalence data on carriage in returning travellers; guidance documents reporting indications on screening for ARB in returning travellers; and recommendations for ARB prevention for the public. The evidence, catalogued at country-level, provided the content for a series of visualizations that allow assessment of the risk of AMR acquisition through travel. Results: Up to January 2021, the database includes data on: i) AMR surveillance for 2.018.241 isolates from 86 countries; ii) ARB prevalence of carriage from 11.679 international travellers; iii) 15 guidance documents published by major public health agencies. The evidence allowed the development of a consultation scheme for the evaluation of risk factors, prevalence of carriage, proportion, and recommendations for screening of AMR. For the public, pre-travel practical measures to minimize the risk of transmission were framed. Conclusions: This easy-to-use, annually updated, freely accessible AMR travel tool (https://epi-net.eu/travel-tool/overview/), is the first of its kind to be developed. For HCPs, it can provide a valuable resource for teaching and a repository that facilitates a stepwise assessment of the risk of AMR spread and strengthen implementation of optimized infection control measures. Similarly, for travellers the tool has the potential to raise awareness of AMR and outlines preventive measures that reduce the risk of AMR acquisition and spread

    Modelling antimicrobial resistance transmission to guide personalized antimicrobial stewardship interventions and infection control policies in healthcare setting: a pilot study

    Get PDF
    Abstract Infection control programs and antimicrobial stewardship have been proven effective in reducing the burden of diseases due to multidrug-resistant organisms, but quantifying the effect of each intervention is an open issue. For this aim, we propose a model to characterize the effect of interventions at single ward level. We adapted the Ross-Macdonald model to describe hospital cross-transmission dynamics of carbapenem resistant Klebsiella pneumoniae (CRKP), considering healthcare workers as the vectors transmitting susceptible and resistant pathogens among admitted patients. The model parameters were estimated from a literature review, further adjusted to reproduce observed clinical outcomes, and validated using real life data from a 2-year study in a university hospital. The model has been further explored through extensive sensitivity analysis, in order to assess the relevance of single interventions as well as their synergistic effects. Our model has been shown to be an effective tool to describe and predict the impact of interventions in reducing the prevalence of CRKP colonisation and infection, and can be extended to other specific hospital and pathological scenarios to produce tailored estimates of the most effective strategies
    corecore