44 research outputs found

    Drosophila Answers to TDP-43 Proteinopathies

    Get PDF
    Initially implicated in the pathogenesis of CFTR and HIV-1 transcription, nuclear factor TDP-43 was subsequently found to be involved in the origin and development of several neurodegenerative diseases. In 2006, in fact, it was reported for the first time the cytoplasmic accumulation of TDP-43 in ubiquitin-positive inclusions of ALS and FTLD patients, suggesting the presence of a shared underlying mechanism for these diseases. Today, different animal models of TDP-43 proteinopathies are available in rodents, nematodes, fishes, and flies. Although these models recapitulate several of the pathological features found in patients, the mechanisms underpinning the progressive neuronal loss observed in TDP-43 proteinopathies remain to be characterized. Compared to other models, Drosophila are appealing because they combine the presence of a sophisticated brain with the possibility to investigate quickly and massively phenotypic genetic modifiers as well as possible therapeutic strategies. At present, the development of TDP-43-related Drosophila models has further strengthened the hypothesis that both TDP-43 “loss-of-function” and “gain-of-function” mechanisms can contribute to disease. The aim of this paper is to describe and compare the results obtained in a series of transgenic and knockout flies, along with the information they have generated, towards a better understanding of the mechanisms underlying TDP-43 proteinopathies

    TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5'UTR.

    Get PDF
    Abstract Nuclear factor TDP-43 is an evolutionarily conserved multifunctional RNA-binding protein associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In recent years, Drosophila models of ALS based on TDP-43 knockdown/overexpression have allowed to find several connections with disease. Among these, we have previously described that silencing the expression of its fly ortholog (TBPH) can alter the expression of the neuronal microtubule-associated protein Futsch leading to alterations of neuromuscular junction (NMJ) organization. In particular, TBPH knocked out flies displayed a significant reduction of Futsch protein levels, although minimal variation in the futsch mRNA content was observed. These conclusions were recently validated in an independent study. Together, these observations strongly support the hypothesis that TBPH might regulate the translation of futsch mRNA. However, the mechanism of TBPH interference in futsch mRNA translation is still unknown. In this work, we use EMSA experiments coupled with RNA-protein co-immunprecipitations and luciferase assays to show that TBPH interacts with a stretch of UG within the 5′UTR of futsch mRNA and translation is positively modulated by this binding. Most importantly, this function is also conserved in human TDP-43. This result can therefore represent the first step in elucidating the relationship between TDP-43, protein translation, and eventual disease onset or progression. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease

    HDAC6 is a bruchpilot deacetylase that facilitates neurotransmitter release

    Get PDF
    Presynaptic densities are specialized structures involved in synaptic vesicle tethering and neurotransmission; however, the mechanisms regulating their function remain understudied. In Drosophila, Bruchpilot is a major constituent of the presynaptic density that tethers vesicles. Here, we show that HDAC6 is necessary and sufficient for deacetylation of Bruchpilot. HDAC6 expression is also controlled by TDP-43, an RNA-binding protein deregulated in amyotrophic lateral sclerosis (ALS). Animals expressing TDP-43 harboring pathogenic mutations show increased HDAC6 expression, decreased Bruchpilot acetylation, larger vesicle-tethering sites, and increased neurotransmission, defects similar to those seen upon expression of HDAC6 and opposite to hdac6 null mutants. Consequently, reduced levels of HDAC6 or increased levels of ELP3, a Bruchpilot acetyltransferase, rescue the presynaptic density defects in TDP-43-expressing flies as well as the decreased adult locomotion. Our work identifies HDAC6 as a Bruchpilot deacetylase and indicates that regulating acetylation of a presynaptic release-site protein is critical for maintaining normal neurotransmission

    Aggregate formation prevents dTDP-43 neurotoxicity in the Drosophila melanogaster eye.

    Get PDF
    Abstract TDP-43 inclusions are an important histopathological feature in various neurodegenerative disorders, including Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degeneration. However, the relation of these inclusions with the pathogenesis of the disease is still unclear. In fact, the inclusions could be toxic themselves, induce loss of function by sequestering TDP-43 or a combination of both. Previously, we have developed a cellular model of aggregation using the TDP-43 Q/N rich amino acid sequence 331–369 repeated 12 times (12xQ/N) and have shown that these cellular inclusions are capable of sequestering the endogenous TDP-43 both in non-neuronal and neuronal cells. We have tested this model in vivo in the Drosophila melanogaster eye. The eye structure develops normally in the absence of dTDP-43, a fact previously seen in knock out fly strains. We show here that expression of EGFP 12xQ/N does not alter the structure of the eye. In contrast, TBPH overexpression is neurotoxic and causes necrosis and loss of function of the eye. More important, the neurotoxicity of TBPH can be abolished by its incorporation to the insoluble aggregates induced by EGFP 12xQ/N. This data indicates that aggregation is not toxic per se and instead has a protective role, modulating the functional TBPH available in the tissue. This is an important indication for the possible pathological mechanism in action on ALS patients

    Chronological requirements of TDP-43 function in synaptic organization and locomotive control.

    Get PDF
    Abstract Alterations in TDP-43 are commonly found in patients suffering from amyotrophic lateral sclerosis (ALS) and the genetic suppression of the conserved homologue in Drosophila (TBPH) provokes alterations in the functional organization of motoneuron synaptic terminals, resulting in locomotive defects and reduced life span. To gain more insight into this pathological process, it is of fundamental importance to establish when during the fly life cycle the lack of TBPH affects motoneuron activity and whether this is a reversible phenomenon. To achieve this, we conditionally expressed the endogenous protein in TBPH minus Drosophila neurons and found that TBPH is a short lived protein permanently required for Drosophila motility and synaptic assembly through the direct modulation of vesicular proteins, such as Syntaxin 1A, indicating that synaptic transmission defects are early pathological consequences of TBPH dysfunction in vivo. Importantly, TBPH late induction is able to recover synaptogenesis and locomotion in adult flies revealing an unexpected late-stage functional and structural neuronal plasticity. These observations suggest that late therapeutic approaches based on TDP-43 functionality may also be successful for the human pathology

    Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells

    Get PDF
    Nuclear factor TDP-43 is known to play an important role in several neurodegenerative pathologies. In general, TDP-43 is an abundant protein within the eukaryotic nucleus that binds to many coding and non-coding RNAs and influence their processing. Using Drosophila, we have performed a functional screening to establish the ability of major hnRNP proteins to affect TDP-43 overexpression/depletion phenotypes. Interestingly, we observed that lowering hnRNP and TDP-43 expression has a generally harmful effect on flies locomotor abilities. In parallel, our study has also identified a distinct set of hnRNPs that is capable of powerfully rescuing TDP-43 toxicity in the fly eye (Hrb27c, CG42458, Glo and Syp). Most importantly, removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion. Moreover, using RNA sequencing analysis we show that DAZAP1 and TDP-43 can co-regulate an extensive number of biological processes and molecular functions potentially important for the neuron/motor neuron pathophysiology. Our results suggest that changes in hnRNP expression levels can significantly modulate TDP-43 functions and affect pathological outcomes

    Glial TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous and non-autonomous mechanisms

    Get PDF
    Alterations in the glial function of TDP-43 are becoming increasingly associated with the neurological symptoms observed in Amyotrophic Lateral Sclerosis (ALS), however, the physiological role of this protein in the glia or the mechanisms that may lead to neurodegeneration are unknown. To address these issues, we modulated the expression levels of TDP-43 in the Drosophila glia and found that the protein was required to regulate the subcellular wrapping of motoneuron axons, promote synaptic growth and the formation of glutamate receptor clusters at the neuromuscular junctions. Interestingly, we determined that the glutamate transporter EAAT1 mediated the regulatory functions of TDP-43 in the glia and demonstrated that genetic or pharmacological compensations of EAAT1 activity were sufficient to modulate glutamate receptor clustering and locomotive behaviors in flies. The data uncovers autonomous and non-autonomous functions of TDP-43 in the glia and suggests new experimentally based therapeutic strategies in ALS
    corecore