77 research outputs found

    Foreign gene expression in Hansenula polymorpha. A system for the synthesis of small functional peptides

    Get PDF
    We describe the synthesis and purification of two functional peptides, namely human insulin-like growth factor II (IGF-II) and Xenopus laevis magainin II in Hansenula polymorpha after their synthesis as hybrid proteins fused to the C terminus of endogenous amine oxidase. The hybrid genes, placed under control of the H. polymorpha alcohol oxidase promoter (PAOX), were integrated into the genomic alcohol oxidase locus, yielding stable production strains. High-level synthesis of the fusion proteins, exceeding 20% of total cellular protein, was obtained when the transformed strains were grown in methanol-limited chemostat cultures; when expressed by itself, i.e. in the absence of the amine oxidase gene, IGF-II could not be recovered from crude cell extracts, probably as a result of rapid proteolytic degradation. Accumulation in peroxisomes did not significantly affect the IGF-II protein stability when expressed in the absence of the carrier protein. Apparently, fusion to the large (±78 kDa) amine oxidase carrier particularly stabilizes the peptides and prevents them from proteolysis. After partial purification, the fusion partners were readily separated by factor Xa treatment

    Stellar populations of classical and pseudo-bulges for a sample of isolated spiral galaxies

    Full text link
    In this paper we present the stellar population synthesis results for a sample of 75 bulges in isolated spiral Sb-Sc galaxies, using the spectroscopic data from the Sloan Digital Sky Survey and the STARLIGHT code. We find that both pseudo-bulges and classical bulges in our sample are predominantly composed of old stellar populations, with mean mass-weighted stellar age around 10 Gyr. While the stellar population of pseudo-bulges is, in general, younger than that of classical bulges, the difference is not significant, which indicates that it is hard to distinguish pseudo-bulges from classical bulges, at least for these isolated galaxies, only based on their stellar populations. Pseudo-bulges have star formation activities with relatively longer timescale than classical bulges, indicating that secular evolution is more important in this kind of systems. Our results also show that pseudo-bulges have a lower stellar velocity dispersion than their classical counterparts, which suggests that classical bulges are more dispersion-supported than pseudo-bulges.Comment: 10 pages, 8 figures. Accepted for publication in Astrophysics & Space Scienc

    Hansenula polymorpha Swi1p and Snf2p are essential for methanol utilisation

    Get PDF
    We have cloned the Hansenula polymorpha SWI1 and SNF2 genes by functional complementation of mutants that are defective in methanol utilisation. These genes encode proteins similar to Saccharomyces cerevisiae Swi1p and Snf2p, which are subunits of the SWI/SNF complex. This complex belongs to the family of nucleosome-remodeling complexes that play a role in transcriptional control of gene expression. Analysis of the phenotypes of constructed H. polymorpha SWI1 and SNF2 disruption strains indicated that these genes are not necessary for growth of cells on glucose, sucrose, or various organic nitrogen sources which involve the activity of peroxisomal oxidases. Both disruption strains showed a moderate growth defect on glycerol and ethanol, but were fully blocked in methanol utilisation. In methanol-induced cells of both disruption strains, two peroxisomal enzymes involved in methanol metabolism, alcohol oxidase and dihydroxyacetone synthase, were hardly detectable, whereas in wild-type cells these proteins were present at very high levels. We show that the reduction in alcohol oxidase protein levels in H. polymorpha SWI1 and SNF2 disruption strains is due to strongly reduced expression of the alcohol oxidase gene. The level of Pex5p, the receptor involved in import of alcohol oxidase and dihydroxyacetone synthase into peroxisomes, was also reduced in both disruption strains compared to that in wild-type cells.

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    A determination of electroweak parameters from Z0→Ό+ÎŒ- (Îł)

    Full text link

    Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species

    Get PDF
    We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd

    A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants

    Get PDF
    We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd

    Search for excited taus from Z0 decays

    Full text link

    Test of QED in e+e−→γγ at LEP

    Full text link

    Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF)

    Get PDF
    We have investigated the feasibility of using gene tagging by restriction enzyme-mediated integration (REMI) to isolate mutants in Hansenula polymorpha. A plasmid that cannot replicate in H. polymorpha and contains a dominant zeocin resistance cassette pREMI-Z was used as the integrative/mutagenic plasmid. We observed that high transformation efficiency was primarily dependent on the use of linearised pREMI-Z, and that the addition of restriction endonuclease to linearised pREMI-Z prior to transformation increased the transformation frequency only slightly. Integration of linearised pREMI-Z occurred at random in the H. polymorpha genome. Therefore, we termed this method Random integration of Linear DNA Fragments (RALF). To explore the potential of RALF in H. polymorpha, we screened a collection of pREMI-Z transformants for mutants affected in peroxisome biogenesis (pex) or selective peroxisome degradation (pdd). Many previously described PEX genes were obtained from the mutant collection, as well as a number of new genes, including H. polymorpha PEX12 and genes whose function in peroxisome biogenesis is still unclear. These results demonstrate that RALF is a powerful tool for tagging genes in H. polymorpha that should make it possible to carry out genome-wide mutagenesis screens.
    • 

    corecore