1,257 research outputs found

    High precision simulations of weak lensing effect on Cosmic Microwave Background polarization

    Get PDF
    We study accuracy, robustness and self-consistency of pixel-domain simulations of the gravitational lensing effect on the primordial CMB anisotropies due to the large-scale structure of the Universe. In particular, we investigate dependence of the results precision on some crucial parameters of such techniques and propose a semi-analytic framework to determine their values so the required precision is a priori assured and the numerical workload simultaneously optimized. Our focus is on the B-mode signal but we discuss also other CMB observables, such as total intensity, T, and E-mode polarization, emphasizing differences and similarities between all these cases. Our semi-analytic considerations are backed up by extensive numerical results. Those are obtained using a code, nicknamed lenS2HAT -- for Lensing using Scalable Spherical Harmonic Transforms (S2HAT) -- which we have developed in the course of this work. The code implements a version of the pixel-domain approach of Lewis (2005) and permits performing the simulations at very high resolutions and data volumes, thanks to its efficient parallelization provided by the S2HAT library -- a parallel library for a calculation of the spherical harmonic transforms. The code is made publicly available.Comment: 20 pages, 14 figures, submitted to A&A, matches version accepted for publication in A&

    Non-LTE neutral carbon spectral line formation in late-type stars

    Full text link
    We present non-Local Thermodynamic Equilibrium (non-LTE) calculations for neutral carbon spectral line formation, carried out for a grid of model atmospheres covering the range of late-type stars. The results of our detailed calculations suggest that the carbon non-LTE corrections in these stars are higher than usually adopted, remaining substantial even at low metallicity. For the most metal-poor stars in the sample of Akerman et al. (2004), the non-LTE abundance corrections are of the order of -0.35...-0.45 dex (when neglecting H collisions). Applying our results to those observations, the apparent [C/O] upturn seen in their LTE analysis is no longer present, thus revealing no need to invoke contributions from Pop. III stars to the carbon nucleosynthesis.Comment: 2 pages, 1 figure. To appear in the Proceedings of IAU Symposium 228 "From Li to U: Elemental Tracers of Early Cosmic Evolution", eds. V. Hill, P. Francois and F. Primas, Cambridge University Press. Replacement with minor textual correction

    Solar Fe abundance and magnetic fields - Towards a consistent reference metallicity

    Full text link
    We investigate the impact on Fe abundance determination of including magnetic flux in series of 3D radiation-MHD simulations of solar convection which we used to synthesize spectral intensity profiles corresponding to disc centre. A differential approach is used to quantify the changes in theoretical equivalent width of a set of 28 iron spectral lines spanning a wide range in lambda, excitation potential, oscillator strength, Land\'e factor, and formation height. The lines were computed in LTE using the spectral synthesis code LILIA. We used input magnetoconvection snapshots covering 50 minutes of solar evolution and belonging to series having an average vertical magnetic flux density of 0, 50, 100 and 200 G. For the relevant calculations we used the Copenhagen Stagger code. The presence of magnetic fields causes both a direct (Zeeman-broadening) effect on spectral lines with non-zero Land\'e factor and an indirect effect on temperature-sensitive lines via a change in the photospheric T-tau stratification. The corresponding correction in the estimated atomic abundance ranges from a few hundredths of a dex up to |Delta log(Fe)| ~ 0.15 dex, depending on the spectral line and on the amount of average magnetic flux within the range of values we considered. The Zeeman-broadening effect gains relatively more importance in the IR. The largest modification to previous solar abundance determinations based on visible spectral lines is instead due to the indirect effect, i.e., the line-weakening caused by a warmer stratification on an optical depth scale. Our results indicate that the average solar iron abundance obtained when using magnetoconvection models can be 0.03-0.11 dex higher than when using the simpler HD convection approach. We demonstrate that accounting for magnetic flux is important in state-of-the-art solar photospheric abundance determinations based on 3D simulations.Comment: 12 pages, 7 figures, A&A in pres

    The polarization signature of photospheric magnetic fields in 3D MHD simulations and observations at disk center

    Full text link
    Before using 3D MHD simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112 and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SP, TIP, POLIS and the GFPI, respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS and GFPI observations.Comment: 12 pages, 11 figures; accepted for publication in Ap

    Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?

    Full text link
    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (>6 Mm) using multi-wavelength observations of limb spicules in different chromospheric spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083 nm). We determine the line width of individual spicules and throughout the field of view and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular spicules reach a maximal height of about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. Both the kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.Comment: Accepted for publication in Solar Physics, 52 pages, 32 figure

    CMB spectral distortions revisited: a new take on μ\mu distortions and primordial non-Gaussianities from FIRAS data

    Get PDF
    Deviations from the blackbody spectral energy distribution of the CMB are a precise probe of physical processes active both in the early universe (such as those connected to particle decays and inflation) and at later times (e.g. reionization and astrophysical emissions). Limited progress has been made in the characterization of these spectral distortions after the pioneering measurements of the FIRAS instrument on the COBE satellite in the early 1990s, which mainly targeted the measurement of their average amplitude across the sky. Since at present no follow-up mission is scheduled to update the FIRAS measurement, in this work we re-analyze the FIRAS data and produce a map of μ\mu-type spectral distortion across the sky. We provide an updated constraint on the μ\mu distortion monopole μ<47×106|\langle\mu\rangle|<47\times 10^{-6} at 95\% confidence level that sharpens the previous FIRAS estimate by a factor of 2\sim 2. We also constrain primordial non-Gaussianities of curvature perturbations on scales 10k5×10410\lesssim k\lesssim 5\times 10^4 through the cross-correlation of μ\mu distortion anisotropies with CMB temperature and, for the first time, the full set of polarization anisotropies from the Planck satellite. We obtain upper limits on fNL3.6×106f_{\rm NL}\lesssim 3.6 \times 10^6 and on its running nNL1.4n_{\rm NL}\lesssim 1.4 that are limited by the FIRAS sensitivity but robust against galactic and extragalactic foreground contaminations. We revisit previous similar analyses based on data of the Planck satellite and show that, despite their significantly lower noise, they yield similar or worse results to ours once all the instrumental and astrophysical uncertainties are properly accounted for. Our work is the first to self-consistently analyze data from a spectrometer and demonstrate the power of such instrument to carry out this kind of science case with reduced systematic uncertainties.Comment: Comments welcome, data will be made available upon acceptanc

    C, N, O Abundances in the Most Metal-Poor Damped Lyman alpha Systems

    Full text link
    This study focuses on some of the most metal-poor damped Lyman alpha absorbers known in the spectra of high redshift QSOs, using new and archival observations obtained with UV-sensitive echelle spectrographs on the Keck and VLT telescopes. The weakness and simple velocity structure of the absorption lines in these systems allows us to measure the abundances of several elements, and in particular those of C, N, and O, a group that is difficult to study in DLAs of more typical metallicities. We find that when the oxygen abundance is less than about 1/100 of solar, the C/O ratio in high redshift DLAs and sub-DLAs matches that of halo stars of similar metallicity and shows higher values than expected from galactic chemical evolution models based on conventional stellar yields. Furthermore, there are indications that at these low metallicities the N/O ratio may also be above simple expectations and may exhibit a minimum value, as proposed by Centurion and her collaborators in 2003. Both results can be interpreted as evidence for enhanced production of C and N by massive stars in the first few episodes of star formation, in our Galaxy and in the distant proto-galaxies seen as QSO absorbers. The higher stellar yields implied may have an origin in stellar rotation which promotes mixing in the stars' interiors, as considered in some recent model calculations. We briefly discuss the relevance of these results to current ideas on the origin of metals in the intergalactic medium and the universality of the stellar initial mass function.Comment: 17 pages, 9 Figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations

    Full text link
    Numerical 3D radiative (M)HD simulations of solar convection are used to understand the physical properties of the solar photosphere. To validate this approach, it is important to check that no excessive thermodynamic fluctuations arise as a consequence of the partially incomplete treatment of radiative transfer. We investigate the realism of 3D convection simulations carried out with the Stagger code. We compared the characteristic properties of several spectral lines in solar disc centre observations with spectra synthesized from the simulations. We degraded the synthetic spectra to the spatial resolution of the observations using the continuum intensity distribution. We estimated the necessary spectral degradation by comparing atlas spectra with averaged observed spectra. In addition to deriving a set of line parameters directly, we used the SIR code to invert the spectra. Most of the line parameters from the observational data are matched well by the degraded simulation spectra. The inversions predict a macroturbulent velocity below 10 m/s for the simulation at full spatial resolution, whereas they yield ~< 1000 m/s at a spatial resolution of 0.3". The temperature fluctuations in the inversion of the degraded simulation do not exceed those from the observational data (of the order of 100-200 K rms for -2<log tau<-0.5). The comparison of line parameters in spatially averaged profiles with the averaged values of line parameters in spatially resolved profiles indicates a significant change of (average) line properties at a spatial scale between 0.13" and 0.3". Up to a spatial resolution of 0.3", we find no indications of the presence of excessive thermodynamic fluctuations in the 3D HD simulation. To definitely confirm that simulations without spatial degradation contain fully realistic thermodynamic fluctuations requires observations at even better spatial resolution.Comment: 21 pages, 15 figures + 2 pages Appendix, accepted for publication in A&A; v2 version: corrected for an error in the calculation of stray-light estimates, for details see the Corrigendum to A&A, 2013, 557, 109 (DOI: 10.1051/0004-6361/201321596). Corrected text and numbers are in bold font. Apart from the stray-light estimates, nothing in the rest of the paper was affected by the erro
    corecore