8 research outputs found

    RARÎł is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation

    Get PDF
    Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation

    Extended periods of neural induction and propagation of embryonic stem cell-derived neural progenitors with EGF and FGF2 enhances Lmx1a expression and neurogenic potential

    No full text
    Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes. When cultured in EGF and FGF2, ESC-derived NS cells have been reported to be stable and multipotent. Conditions that enable differentiation of NS cells through the committed progenitor and precursor stages to specific neuronal subtypes have not been fully established. In this study we investigated, using Lmx1a reporter ESCs, whether the length of neural induction (NI) dictated the phenotypic potential of cultures of ESC-derived NS cells or NP cells. Following 4, 7 or 10 day periods of NI, ESCs in monolayer culture were harvested and cultured as neurospheres, prior to replating as monolayer cultures for several passages in EGF and FGF2. The NS/NP cultures were then directed towards mature neuronal fates over 16–17 days. 4 and 7-day NS cell cultures could not be differentiated towards dopaminergic, serotonergic or cholinergic fates as determined by the absence of tyrosine hydroxylase, 5-HT or choline acetyltransferase (ChAT) immunolabelling. In contrast NS/NP cultures derived after 10 days of NI were able to generate tyrosine hydroxylase and 5-HT positive neurons (24 ± 6 and 13 ± 1% of the βIII-tubulin positive population, respectively, n = 3). Our data suggest that extended periods of neural induction enhanced the potential of mouse ESC-derived NS/NP cells to generate specific subtypes of neurons. NS/NP cells derived after shorter periods of NI appeared to be lineage-restricted in relation to the neuronal subtypes observed after removal of EGF

    Adenovirus Terminal Protein Contains a Bipartite Nuclear Localisation Signal Essential for Its Import into the Nucleus

    Get PDF
    Adenoviruses contain dsDNA covalently linked to a terminal protein (TP) at the 5â€Čend. TP plays a pivotal role in replication and long-lasting infectivity. TP has been reported to contain a nuclear localisation signal (NLS) that facilitates its import into the nucleus. We studied the potential NLS motifs within TP using molecular and cellular biology techniques to identify the motifs needed for optimum nuclear import. We used confocal imaging microscopy to monitor the localisation and nuclear association of GFP fusion proteins. We identified two nuclear localisation signals, PV(R)6VP and MRRRR, that are essential for fully efficient TP nuclear entry in transfected cells. To study TP–host interactions further, we expressed TP in Escherichia coli (E. coli). Nuclear uptake of purified protein was determined in digitonin-permeabilised cells. The data confirmed that nuclear uptake of TP requires active transport using energy and shuttling factors. This mechanism of nuclear transport was confirmed when expressed TP was microinjected into living cells. Finally, we uncovered the nature of TP binding to host nuclear shuttling proteins, revealing selective binding to Imp ÎČ, and a complex of Imp α/ÎČ but not Imp α alone. TP translocation to the nucleus could be inhibited using selective inhibitors of importins. Our results show that the bipartite NLS is required for fully efficient TP entry into the nucleus and suggest that this translocation can be carried out by binding to Imp ÎČ or Imp α/ÎČ. This work forms the biochemical foundation for future work determining the involvement of TP in nuclear delivery of adenovirus DNA

    Pharmaceutical chemistry journal

    No full text
    LIM homeobox transcription factor 1 alpha (Lmx1a) is required for the development of midbrain dopaminergic neurons, roof plate formation, and cortical hem development. We generated a reporter embryonic stem cell (ESC) line for Lmx1a and used it to track differentiation and extract neural progenitors from differentiating mouse ESCs. Lmx1a(+) cells gave rise to functional cortical upper layer GABAergic neurons or dopaminergic neurons depending on the culture conditions used for differentiation. Under chemically defined neurobasal conditions, ESC differentiation resulted in widespread and transient expression of Lmx1a, without the addition of exogenous factors such as sonic hedgehog (Shh), Wnts, and/or bone morphogenic proteins (BMPs). Under neutral conditions, Lmx1a(+) cells express genes known to be downstream of Lmx1(+) and cortical hem markers Wnt3a and p73. The majority of these cells did not express the ventral midbrain dopaminergic marker Foxa2 or dorsal roof plate marker BMP-2. Lmx1a(+)-Foxa2(-) cells were primed to become SatB2(+) GABAergic neurons and appeared to be resistant to dopaminergic patterning cues. PA6 coculture produced a substantial population of Lmx1a(+) progenitors that also expressed Foxa2 and on further differentiation gave rise to dopaminergic neurons at high frequency. We conclude that Lmx1a is a useful marker for the extraction of progenitors of GABAergic or dopaminergic neurons. We caution against the assumption that it indicates dopaminergic commitment during in vitro differentiation of ESCs. Indeed, in monolayer culture under neurobasal conditions, with or without the addition of Shh and fibroblast growth factor 8 (FGF8), Lmx1a(+) cells were predominantly progenitors of forebrain GABAergic neurons. We obtained dopaminergic cells in large numbers only by coculture with PA6 cells. STEM CELLS 2012;30:1349-136

    A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency.

    No full text
    Myeloproliferative syndromes (MPS) are a heterogeneous subclass of nonlymphoid hematopoietic neoplasms which are considered to be intrinsic to hematopoietic cells. The causes of MPS are largely unknown. Here, we demonstrate that mice deficient for retinoic acid receptor gamma (RARgamma), develop MPS induced solely by the RARgamma-deficient microenvironment. RARgamma(-/-) mice had significantly increased granulocyte/macrophage progenitors and granulocytes in bone marrow (BM), peripheral blood, and spleen. The MPS phenotype continued for the lifespan of the mice and was more pronounced in older mice. Unexpectedly, transplant studies revealed this disease was not intrinsic to the hematopoietic cells. BM from wild-type mice transplanted into mice with an RARgamma(-/-) microenvironment rapidly developed the MPS, which was partially caused by significantly elevated TNFalpha in RARgamma(-/-) mice. These data show that loss of RARgamma results in a nonhematopoietic cell-intrinsic MPS, revealing the capability of the microenvironment to be the sole cause of hematopoietic disorders

    Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose boosterResearch in context

    No full text
    Summary: Background: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. Methods: 76 healthy adults aged 18–64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59Âź, CSL Seqirus) protein vaccine (5, 15 or 45 Όg, N = 32), mRNA vaccine (10, 20, or 50 Όg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. ClinicalTrials.gov NCT05272605. Findings: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. Interpretation: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. Funding: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors

    General Bibliography

    No full text
    corecore