236 research outputs found

    Altered expression of immune-associated genes in first-trimester human decidua of pregnancies later complicated with hypertension or foetal growth restriction

    Get PDF
    During pregnancy the maternal immune system has to coordinate uterine spiral-artery remodelling, trophoblast invasion, and acceptance of the semi-allogenic fetus simultaneously. As dysregulation of the immune system is associated with adverse pregnancy outcomes, we analysed first-trimester deciduas of pregnancies for immune parameters in later complicated pregnancies. Higher IL6 and macrophage mRNA expression, and lower ratios of regulatory macrophages were found in first-trimester deciduas of pregnancies later complicated with pregnancy-induced hypertension. Lower Gata3 (Th2) mRNA expression was found in deciduas of pregnancies with later foetal growth restriction. Our results suggest that adverse pregnancy outcomes are associated with immunological disturbances in first-trimester deciduas. (C) 2012 Elsevier Ltd. All rights reserved

    Crossover from Poisson to Wigner-Dyson Level Statistics in Spin Chains with Integrability Breaking

    Full text link
    We study numerically the evolution of energy-level statistics as an integrability-breaking term is added to the XXZ Hamiltonian. For finite-length chains, physical properties exhibit a cross-over from behavior resulting from the Poisson level statistics characteristic of integrable models to behavior corresponding to the Wigner-Dyson statistics characteristic of the random-matrix theory used to describe chaotic systems. Different measures of the level statistics are observed to follow different crossover patterns. The range of numerically accessible system sizes is too small to establish with certainty the scaling with system size, but the evidence suggests that in a thermodynamically large system an infinitesimal integrability breaking would lead to Wigner-Dyson behavior.Comment: 8 pages, 8 figures, Revtex

    Finite temperature mobility of a particle coupled to a fermion environment

    Full text link
    We study numerically the finite temperature and frequency mobility of a particle coupled by a local interaction to a system of spinless fermions in one dimension. We find that when the model is integrable (particle mass equal to the mass of fermions) the static mobility diverges. Further, an enhanced mobility is observed over a finite parameter range away from the integrable point. We present a novel analysis of the finite temperature static mobility based on a random matrix theory description of the many-body Hamiltonian.Comment: 11 pages (RevTeX), 5 Postscript files, compressed using uufile

    Energy level statistics of the two-dimensional Hubbard model at low filling

    Full text link
    The energy level statistics of the Hubbard model for L×LL \times L square lattices (L=3,4,5,6) at low filling (four electrons) is studied numerically for a wide range of the coupling strength. All known symmetries of the model (space, spin and pseudospin symmetry) have been taken into account explicitly from the beginning of the calculation by projecting into symmetry invariant subspaces. The details of this group theoretical treatment are presented with special attention to the nongeneric case of L=4, where a particular complicated space group appears. For all the lattices studied, a significant amount of levels within each symmetry invariant subspaces remains degenerated, but except for L=4 the ground state is nondegenerate. We explain the remaining degeneracies, which occur only for very specific interaction independent states, and we disregard these states in the statistical spectral analysis. The intricate structure of the Hubbard spectra necessitates a careful unfolding procedure, which is thoroughly discussed. Finally, we present our results for the level spacing distribution, the number variance Σ2\Sigma^2, and the spectral rigidity Δ3\Delta_3, which essentially all are close to the corresponding statistics for random matrices of the Gaussian ensemble independent of the lattice size and the coupling strength. Even very small coupling strengths approaching the integrable zero coupling limit lead to the Gaussian ensemble statistics stressing the nonperturbative nature of the Hubbard model.Comment: 31 pages (1 Revtex file and 10 postscript figures

    A Brownian Motion Model of Parametric Correlations in Ballistic Cavities

    Full text link
    A Brownian motion model is proposed to study parametric correlations in the transmission eigenvalues of open ballistic cavities. We find interesting universal properties when the eigenvalues are rescaled at the hard edge of the spectrum. We derive a formula for the power spectrum of the fluctuations of transport observables as a response to an external adiabatic perturbation. Our formula correctly recovers the Lorentzian-squared behaviour obtained by semiclassical approaches for the correlation function of conductance fluctuations.Comment: 19 pages, written in RevTe

    Cell Type-Specific Neuroprotective Activity of Untranslocated Prion Protein

    Get PDF
    Background: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP). However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. Principal Findings: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. Significance: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function

    Measuring and Comparing Party Ideology and Heterogeneity

    Get PDF
    Estimates of party ideological positions in Western Democracies yield useful party-level information, but lack the ability to provide insight into intraparty politics. In this paper, we generate comparable measures of latent individual policy positions from elite survey data which enable analysis of elite-level party ideology and heterogeneity. This approach has advantages over both expert surveys and approaches based on behavioral data, such as roll call voting and is directly relevant to the study of party cohesion. We generate a measure of elite positions for several European countries using a common space scaling approach and demonstrate its validity as a measure of party ideology. We then apply these data to determine the sources of party heterogeneity, focusing on the role of intraparty competition in electoral systems, nomination rules, and party goals. We find that policy-seeking parties and centralized party nomination rules reduce party heterogeneity. While intraparty competition has no effect, the presence of these electoral rules conditions the effect of district magnitude
    • …
    corecore