33 research outputs found
Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons
The universal conductance fluctuations (UCFs), one of the most important
manifestations of mesoscopic electronic interference, have not yet been
demonstrated for the two-dimensional surface state of topological insulators
(TIs). Even if one delicately suppresses the bulk conductance by improving the
quality of TI crystals, the fluctuation of the bulk conductance still keeps
competitive and difficult to be separated from the desired UCFs of surface
carriers. Here we report on the experimental evidence of the UCFs of the
two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The
solely-B\perp-dependent UCF is achieved and its temperature dependence is
investigated. The surface transport is further revealed by weak
antilocalizations. Such survived UCFs of the topological surface states result
from the limited dephasing length of the bulk carriers in ternary crystals. The
electron-phonon interaction is addressed as a secondary source of the surface
state dephasing based on the temperature-dependent scaling behavior
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Tunable metal-insulator transition in double-layer graphene heterostructures
We report a double-layer electronic system made of two closely-spaced but
electrically isolated graphene monolayers sandwiched in boron nitride. For
large carrier densities in one of the layers, the adjacent layer no longer
exhibits a minimum metallic conductivity at the neutrality point, and its
resistivity diverges at low temperatures. This divergence can be suppressed by
magnetic field or by reducing the carrier density in the adjacent layer. We
believe that the observed localization is intrinsic for neutral graphene with
generic disorder if metallic electron-hole puddles are screened out
Snap-through instability of graphene on substrates
We determine the graphene morphology regulated by substrates with herringbone
and checkerboard surface corrugations. As the graphene/substrate interfacial
bonding energy and the substrate surface roughness vary, the graphene
morphology snaps between two distinct states: 1) closely conforming to the
substrate and 2) remaining nearly flat on the substrate. Such a snapthrough
instability of graphene can potentially lead to desirable electronic properties
to enable graphene-based devices.Comment: 13 pages, 4 figures; Nanoscale Research Letters, in press, 200
Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering
Among many remarkable qualities of graphene, its electronic properties
attract particular interest due to a massless chiral character of charge
carriers, which leads to such unusual phenomena as metallic conductivity in the
limit of no carriers and the half-integer quantum Hall effect (QHE) observable
even at room temperature [1-3]. Because graphene is only one atom thick, it is
also amenable to external influences including mechanical deformation. The
latter offers a tempting prospect of controlling graphene's properties by
strain and, recently, several reports have examined graphene under uniaxial
deformation [4-8]. Although the strain can induce additional Raman features
[7,8], no significant changes in graphene's band structure have been either
observed or expected for realistic strains of approx. 10% [9-11]. Here we show
that a designed strain aligned along three main crystallographic directions
induces strong gauge fields [12-14] that effectively act as a uniform magnetic
field exceeding 10 T. For a finite doping, the quantizing field results in an
insulating bulk and a pair of countercirculating edge states, similar to the
case of a topological insulator [15-20]. We suggest realistic ways of creating
this quantum state and observing the pseudo-magnetic QHE. We also show that
strained superlattices can be used to open significant energy gaps in
graphene's electronic spectrum
