752 research outputs found

    Virulence adaptation in a rice leafhopper: Exposure to ineffective genes compromises pyramided resistance

    Full text link
    © 2018 The Authors Pyramiding resistance genes is predicted to increase the durability of resistant rice varieties against phloem-feeding herbivores. We examined responses by the green leafhopper, Nephotettix virescens (Hemiptera: Cicadellidae), to near-isogenic rice lines with zero, one and two resistance genes. The recurrent parent (T65) and monogenic lines (GRH2-NIL and GRH4-NIL) with genes for resistance to the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), were susceptible to the green leafhopper, but the pyramided line (GRH2/GRH4-PYL) was highly resistant to the green leafhopper. We selected green leafhoppers, N. virescens, from five sites in the Philippines for over 20 generations on each of the four lines. Populations selected on GRH2/GRH4-PYL gained partial virulence (feeding and development equal to that on T65) to the pyramided line within 10 generations and complete virulence (egg-laying equal to that on T65) within 20 generations. After 20 generations of rearing on the susceptible monogenic lines, green leafhoppers were also capable of developing and laying eggs on GRH2/GRH4-PYL. Furthermore, green leafhoppers reared on the susceptible GRH4-NIL for 20 generations showed equal preferences for T65 and GRH2/GRH4-PYL in choice bioassays. Our results indicate that previous long-term exposure to ineffective genes (including unperceived resistance genes) could dramatically reduce the durability of pyramided resistance. We suggest that informed crop management and deployment strategies should be developed to accompany rice lines with pyramided resistance and avoid the build-up of virulent herbivore populations

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Expression of CXCL10 is associated with response to radiotherapy and overall survival in squamous cell carcinoma of the tongue

    Get PDF
    Five-year survival for patients with oral cancer has been disappointingly stable during the last decades, creating a demand for new biomarkers and treatment targets. Lately, much focus has been set on immunomodulation as a possible treatment or an adjuvant increasing sensitivity to conventional treatments. The objective of this study was to evaluate the prognostic importance of response to radiotherapy in tongue carcinoma patients as well as the expression of the CXC-chemokines in correlation to radiation response in the same group of tumours. Thirty-eight patients with tongue carcinoma that had received radiotherapy followed by surgery were included. The prognostic impact of pathological response to radiotherapy, N-status, T-stage, age and gender was evaluated using Cox's regression models, Kaplan-Meier survival curves and chi-square test. The expression of 23 CXC-chemokine ligands and their receptors were evaluated in all patients using microarray and qPCR and correlated with response to treatment using logistic regression. Pathological response to radiotherapy was independently associated to overall survival with a 2-year survival probability of 81 % for patients showing a complete pathological response, while patients with a non-complete response only had a probability of 42 % to survive for 2 years (p = 0.016). The expression of one CXC-chemokine, CXCL10, was significantly associated with response to radiotherapy and the group of patients with the highest CXCL10 expression responded, especially poorly (p = 0.01). CXCL10 is a potential marker for response to radiotherapy and overall survival in patients with squamous cell carcinoma of the tongue

    Energy gaps in the failed high-Tc superconductor La1.875Ba0.125CuO4

    Full text link
    A central issue on high-Tc superconductivity is the nature of the normal-state gap (pseudogap) in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity, competing order and spectral weight suppression due to many-body effects. Recently, while some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap, others in the normal state, either by extrapolation from high-temperature data or directly from La1.875Ba0.125CuO4 (LBCO-1/8) at low temperature, suggest the ground-state pseudogap is a single gap of d-wave form. Here we report angle-resolved photoemission (ARPES) data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-wave component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-Tc superconductor which involves a possible precursor pairing energy scale around the node and another of different but unknown origin near the antinode.Comment: Nature Physics advance online publication, Dec. 21st 2008; Author's original version of the main text; for a better resolution of figures & Supplementary Information, visit Nature Physics' websit

    Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52

    Get PDF
    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F2 population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F2 population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan

    Changes in Dry State Hemoglobin over Time Do Not Increase the Potential for Oxidative DNA Damage in Dried Blood

    Get PDF
    BACKGROUND: Hemoglobin (Hb) is the iron-containing oxygen transport protein present in the red blood cells of vertebrates. Ancient DNA and forensic scientists are particularly interested in Hb reactions in the dry state because both regularly encounter aged, dried bloodstains. The DNA in such stains may be oxidatively damaged and, in theory, may be deteriorated by the presence of Hb. To understand the nature of the oxidative systems potentially available to degrade DNA in the presence of dried Hb, we need to determine what molecular species Hb forms over time. These species will determine what type of iron (i.e. Fe(2+)/Fe(3+)/Fe(4+)) is available to participate in further chemical reactions. The availability of "free" iron will affect the ability of the system to undergo Fenton-type reactions which generate the highly reactive hydroxyl radical (OH*). The OH* can directly damage DNA. METHODOLOGY/PRINCIPAL FINDINGS: Oxygenated Hb (oxyHb) converts over time to oxidized Hb (metHb), but this happens more quickly in the dry state than in the hydrated state, as shown by monitoring stabilized oxyHb. In addition, dry state oxyHb converts into at least one other unknown species other than metHb. Although "free" iron was detectable as both Fe(2+) and Fe(3+) in dry and hydrated oxyHb and metHb, the amount of ions detected did not increase over time. There was no evidence that Hb becomes more prone to generating OH* as it ages in either the hydrated or dry states. CONCLUSIONS: The Hb molecule in the dried state undergoes oxidative changes and releases reactive Fe(II) cations. These changes, however, do not appear to increase the ability of Hb to act as a more aggressive Fenton reagent over time. Nevertheless, the presence of Hb in the vicinity of DNA in dried bloodstains creates the opportunity for OH*-induced oxidative damage to the deoxyribose sugar and the DNA nucleobases

    Intracapsular pressure and interleukin-1β cytokine in hips with acetabular dysplasia

    Get PDF
    Background and purpose Several studies have demonstrated an increased intracapsular pressure in several hip disorders such as septic arthritis, synovitis, and trauma. We therefore measured the intracapsular pressure in different positions in early dysplasic hips and its relation to the concentration of interleukin-1β (IL-1β), the volume of joint fluid, and the clinical and radiographic findings before a periacetabular osteotomy

    Inducing mineral precipitation in groundwater by addition of phosphate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 10<sup>5 </sup>and 10<sup>7 </sup>mL<sup>-1</sup>) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM).</p> <p>Results</p> <p>The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing <it>a </it>and decreasing <it>c </it>lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control.</p> <p>Conclusions</p> <p>Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of bacterial cells appears to be associated with delayed HAP precipitation, changes in the lattice parameters, and reduced incorporation of trace elements as compared to cell-free systems. Schemes to remediate groundwater contaminated with trace metals that are based on enhanced phosphate mineral precipitation may need to account for these phenomena, particularly if the remediation approach relies on enhancement of <it>in situ </it>microbial populations.</p
    corecore