305 research outputs found

    Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda

    Get PDF
    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions

    ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genetic basis of human diseases is a central goal of genetics and molecular biology. While traditional linkage analysis and modern high-throughput techniques often provide long lists of tens or hundreds of disease gene candidates, the identification of disease genes among the candidates remains time-consuming and expensive. Efficient computational methods are therefore needed to prioritize genes within the list of candidates, by exploiting the wealth of information available about the genes in various databases.</p> <p>Results</p> <p>We propose ProDiGe, a novel algorithm for Prioritization of Disease Genes. ProDiGe implements a novel machine learning strategy based on learning from positive and unlabeled examples, which allows to integrate various sources of information about the genes, to share information about known disease genes across diseases, and to perform genome-wide searches for new disease genes. Experiments on real data show that ProDiGe outperforms state-of-the-art methods for the prioritization of genes in human diseases.</p> <p>Conclusions</p> <p>ProDiGe implements a new machine learning paradigm for gene prioritization, which could help the identification of new disease genes. It is freely available at <url>http://cbio.ensmp.fr/prodige</url>.</p

    Monoclonal antibodies targeting the disintegrin-like domain of ADAMDEC1 modulates the proteolytic activity and enables quantification of ADAMDEC1 protein in human plasma

    Get PDF
    Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease with unknown biological function and a short domain structure. ADAMDEC1 mRNA has previously been demonstrated primarily in macrophages and mature dendritic cells. Here, we generated monoclonal antibodies (mAbs) against the mature ADAMDEC1 protein, as well as mAbs specific for the ADAMDEC1 pro-form, enabling further investigations of the metalloprotease. The generated mAbs bind ADAMDEC1 with varying affinity and represent at least six different epitope bins. Binding of mAbs to one epitope bin in the C-terminal disintegrin-like domain efficiently reduces the proteolytic activity of ADAMDEC1. A unique mAb, also recognizing the disintegrin-like domain, stimulates the caseinolytic activity of ADAMDEC1 while having no significant effect on the proteolysis of carboxymethylated transferrin. Using two different mAbs binding the disintegrin-like domain, we developed a robust, quantitative sandwich ELISA and demonstrate secretion of mature ADAMDEC1 protein by primary human macrophages. Surprisingly, we also found ADAMDEC1 present in human plasma with an approximate concentration of 0.5 nM. The presence of ADAMDEC1 both in human plasma and in macrophage cell culture supernatant were biochemically validated using immunoprecipitation and Western blot analysis demonstrating that ADAMDEC1 is secreted in a mature form

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Adrenergic Alpha-1 Pathway Is Associated with Hypertension among Nigerians in a Pathway-focused Analysis

    Get PDF
    The pathway-focused association approach offers a hypothesis driven alternative to the agnostic genome-wide association study. Here we apply the pathway-focused approach to an association study of hypertension, systolic blood pressure (SBP), and diastolic blood pressure (DBP) in 1614 Nigerians with genome-wide data.Testing of 28 pathways with biological relevance to hypertension, selected a priori, containing a total of 101 unique genes and 4,349 unique single-nucleotide polymorphisms (SNPs) showed an association for the adrenergic alpha 1 (ADRA1) receptor pathway with hypertension (p<0.0009) and diastolic blood pressure (p<0.0007). Within the ADRA1 pathway, the genes PNMT (hypertension P(gene)<0.004, DBP P(gene)<0.004, and SBP P(gene)<0.009, and ADRA1B (hypertension P(gene)<0.005, DBP P(gene)<0.02, and SBP P(gene)<0.02) displayed the strongest associations. Neither ADRA1B nor PNMT could be the sole mediator of the observed pathway association as the ADRA1 pathway remained significant after removing ADRA1B, and other pathways involving PNMT did not reach pathway significance.We conclude that multiple variants in several genes in the ADRA1 pathway led to associations with hypertension and DBP. SNPs in ADRA1B and PNMT have not previously been linked to hypertension in a genome-wide association study, but both genes have shown associations with hypertension through linkage or model organism studies. The identification of moderately significant (10(-2)>p>10(-5)) SNPs offers a novel method for detecting the "missing heritability" of hypertension. These findings warrant further studies in similar and other populations to assess the generalizability of our results, and illustrate the potential of the pathway-focused approach to investigate genetic variation in hypertension

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Preferential Localization of Human Origins of DNA Replication at the 5′-Ends of Expressed Genes and at Evolutionarily Conserved DNA Sequences

    Get PDF
    Replication of mammalian genomes requires the activation of thousands of origins which are both spatially and temporally regulated by as yet unknown mechanisms. At the most fundamental level, our knowledge about the distribution pattern of origins in each of the chromosomes, among different cell types, and whether the physiological state of the cells alters this distribution is at present very limited.We have used standard λ-exonuclease resistant nascent DNA preparations in the size range of 0.7–1.5 kb obtained from the breast cancer cell line MCF–7 hybridized to a custom tiling array containing 50–60 nt probes evenly distributed among genic and non-genic regions covering about 1% of the human genome. A similar DNA preparation was used for high-throughput DNA sequencing. Array experiments were also performed with DNA obtained from BT-474 and H520 cell lines. By determining the sites showing nascent DNA enrichment, we have localized several thousand origins of DNA replication. Our major findings are: (a) both array and DNA sequencing assay methods produced essentially the same origin distribution profile; (b) origin distribution is largely conserved (>70%) in all cell lines tested; (c) origins are enriched at the 5′ends of expressed genes and at evolutionarily conserved intergenic sequences; and (d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and RNA Polymerase II chromatin binding sites at origins of DNA replication.Our results suggest that the program for origin activation is largely conserved among different cell types. Also, our work supports recent studies connecting transcription initiation with replication, and in addition suggests that evolutionarily conserved intergenic sequences have the potential to participate in origin selection. Overall, our observations suggest that replication origin selection is a stochastic process significantly dependent upon local accessibility to replication factors
    corecore