626 research outputs found

    Direct Confirmation of Two Pattern Speeds in the Double Barred Galaxy NGC 2950

    Get PDF
    We present surface photometry and stellar kinematics of NGC 2950, which is a nearby and undisturbed SB0 galaxy hosting two nested stellar bars. We use the Tremaine-Weinberg method to measure the pattern speed of the primary bar. This also permits us to establish directly and for the first time that the two nested bars are rotating with different pattern speeds, and in particular that the rotation frequency of the secondary bar is higher than that of the primary one.Comment: 12 pages, 4 figures. To appear in ApJ Letter

    Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies. II. NGC 247 and NGC 2403

    Full text link
    J, H, and K' images obtained with the Canada-France-Hawaii Telescope adaptive optics system are used to investigate the star-forming histories of the central regions of the Sc galaxies NGC 247 and NGC 2403. The brightest resolved red stars within 15 arcsec of the nucleus of each galaxy are red supergiants, indicating that the central few hundred parsecs of these galaxies experienced star formation within the last ~ 0.1 Gyr. However, when averaged over Gyr time scales, the star-forming histories of the inner disks of these galaxies have been remarkably similar, as expected if the long-term evolution of disks is defined by local characteristics such as mass density. It is demonstrated that NGC 247 and NGC 2403, like M33, harbour nuclear star clusters with stellar contents that differ from the surrounding central light concentrations. The nucleus of NGC 2403 is significantly bluer than that of the other two galaxies and the K-band surface brightnesses near the centers of NGC 247 and NGC 2403 are 1 -- 2 mag per square arcsec lower than in M33. Finally, it is noted that young or intermediate-age nuclear star clusters are a common occurence in nearby spirals, indicating that nuclear star formation in these objects is either continuous or episodic on time scales of 0.1 - 1 Gyr.Comment: 27 pages of text and 14 figures; to appear in the Astronomical Journa

    Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies

    Get PDF
    We present results from an imaging survey of an unbiased sample of thirty-eight early-type (S0--Sa), low-inclination, optically barred galaxies in the field. Our goal was to find and characterize central stellar and gaseous structures: secondary bars, inner disks, and nuclear rings. Bars inside bars are surprisingly common: at least one quarter of the sample galaxies (possibly as many as 40%) are double-barred, with no preference for Hubble type or the strength of the primary bar. A typical secondary bar is ~12% of the size of its primary bar and 240--750 pc in radius. We see no significant effect of secondary bars on nuclear activity. We also find kiloparsec-scale inner disks in at least 20% of our sample, almost exclusively in S0 galaxies. These disks are on average 20% the size of their host bar, and show a wider range of relative sizes than do secondary bars. Nuclear rings are present in about a third of our sample. Most are dusty, sites of current or recent star formation, or both; such rings are preferentially found in Sa galaxies. Three S0 galaxies (15% of the S0's) appear to have purely stellar nuclear rings, with no evidence for dust or recent star formation. The fact that these central stellar structures are so common indicates that the inner regions of early-type barred galaxies typically contain dynamically cool and disklike structures. This is especially true for S0 galaxies, where secondary bars, inner disks, and/or stellar nuclear rings are present at least two thirds of the time. (abridged)Comment: LaTeX, 15 pages, 7 EPS figures; to appear in The Astronomical Journal (July 2002

    Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks

    Full text link
    Present in over 45% of local spirals, boxy and peanut-shaped bulges are generally interpreted as edge-on bars and may represent a key phase in the evolution of bulges. Aiming to test such claims, the kinematic properties of self-consistent 3D N-body simulations of bar-unstable disks are studied. Using Gauss-Hermite polynomials to describe the stellar kinematics, a number of characteristic bar signatures are identified in edge-on disks: 1) a major-axis light profile with a quasi-exponential central peak and a plateau at moderate radii (Freeman Type II profile); 2) a ``double-hump'' rotation curve; 3) a sometime flat central velocity dispersion peak with a plateau at moderate radii and occasional local central minimum and secondary peak; 4) an h3-V correlation over the projected bar length. All those kinematic features are spatially correlated and can easily be understood from the orbital structure of barred disks. They thus provide a reliable and easy-to-use tool to identify edge-on bars. Interestingly, they are all produced without dissipation and are increasingly realized to be common in spirals, lending support to bar-driven evolution scenarios for bulge formation. So called ``figure-of-eight'' position-velocity diagrams are never observed, as expected for realistic orbital configurations. Although not uniquely related to triaxiality, line-of-sight velocity distributions with a high velocity tail (i.e. an h3-V correlation) appear as particularly promising tracers of bars. The stellar kinematic features identified grow in strength as the bar evolves and vary little for small inclination variations. Many can be used to trace the bar length. Comparisons with observations are encouraging and support the view that boxy and peanut-shaped bulges are simply thick bars viewed edge-on.Comment: 32 pages, 4 figures, AASTeX preprint. Revised following referees' comments. Now accepted for publication in The Astrophysical Journal. We strongly suggest you download the version with full resolution figures at http://www.astro.columbia.edu/~bureau/Publications/Nbody_ApJ04.ps.g

    Towards the Secondary Bar: Gas Morphology and Dynamics in NGC 4303

    Get PDF
    The bulk of the molecular line emission in the double barred galaxy NGC4303 as observed in its CO(1-0) line with the OVRO mm-interferometer comes from two straight gas lanes which run north-south along the leading sides of the large-scale primary bar. Inside a radius of ~ 400 pc the molecular gas forms a spiral pattern which, for the northern arm, can be traced to the nucleus. Comparison of the OVRO and archival HST data with dynamical models of gas flow in the inner kiloparsec of single- and double-barred galaxies shows that the observed global properties of the molecular gas are in agreement with models for the gas flow in a strong, large-scale bar, and the two-arm spiral structure seen in CO in the inner kiloparsec can already be explained by a density wave initiated by the potential of that bar. Only a weak correlation between the molecular gas distribution and the extinction seen in the HST V-H map is found in the inner 400 pc of NGC4303: The innermost part of one arm of the nuclear CO spiral correlates with a weak dust filament in the color map, while the overall dust distribution follows a ring or single-arm spiral pattern well correlated with the UV continuum. This complicated nuclear geometry of the stellar and gaseous components allows for two scenarios: (A) A self-gravitating m=1 mode is present forming the spiral structure seen in the UV continuum. In this case the gas kinematics would be unaffected by the small (~ 4'') inner bar. (B) The UV continuum traces a complete ring which is heavily extincted north of the nucleus. Such a ring forms in hydrodynamic models of double bars, but the models cannot account for the UV emission observed on the leading side of the inner bar. (abridged)Comment: 47 pages, 14 figures, accepted for publication in Ap

    Forming Young Bulges within Existing Disks: Statistical Evidence for External Drivers

    Full text link
    Contrary to traditional models of galaxy formation, recent observations suggest that some bulges form within preexisting disk galaxies. Such late-epoch bulge formation within disks seems to be linked to disk gas inflow and central star formation, caused by either internal secular processes or galaxy mergers and interactions. We identify a population of galaxies likely to be experiencing active bulge growth within disks, using the criterion that the color within the half-light radius is bluer than the outer disk color. Such blue-centered galaxies make up >10% of star-forming disk galaxies within the Nearby Field Galaxy Survey, a broad survey designed to represent the natural diversity of the low-z galaxy population over a wide range of luminosities and environments. Blue-centered galaxies correlate at 99% confidence with morphological peculiarities suggestive of minor mergers and interactions. From this and other evidence, we argue that external drivers rather than internal secular processes probably account for the majority of blue-centered galaxies. We go on to discuss quantitative plausibility arguments indicating that blue-centered evolutionary phases may represent an important mode of bulge growth for most disk galaxies, leading to significant changes in bulge-to-disk ratio without destroying disks. If this view is correct, bulge growth within disks may be a natural consequence of the repeated galaxy mergers and interactions inherent in hierarchical galaxy formation.Comment: 18 pages including 12 figures, AJ, accepte

    Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    Full text link
    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x 105Msolar,andagesof5to25millionyears.Theoverallstructureofthenuclearspiralsaswellasthesize,numberandmassesofthestarformingknotsareexplainedinthecontextofamassivegaseousnucleardisksubjecttoselfgravitationalinstabilitiesandtothegravitationalfieldcreatedbythenuclearbar.Accordingtothemodel,thegaseousdiskhasamassofabout5x107Msolarinsidearadiusof400pc,thebarhasaradiusof150pcandapatternspeedofabout0.5Myr1,andtheaveragemassaccretionrateintothecore(R<8pc)isabout0.01Msolar10^5 M_{solar}, and ages of 5 to 25 million years. The overall structure of the nuclear spirals as well as the size, number and masses of the star-forming knots are explained in the context of a massive gaseous nuclear disk subject to self-gravitational instabilities and to the gravitational field created by the nuclear bar. According to the model, the gaseous disk has a mass of about 5 x 10^7 M_{solar} inside a radius of 400 pc, the bar has a radius of 150 pc and a pattern speed of about 0.5 Myr^{-1}, and the average mass accretion rate into the core (R < 8 pc) is about 0.01 M_{solar} yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000

    Structure and Star Formation in NGC 925

    Get PDF
    We present the results from an optical study of the stellar & star formation properties of NGC 925 using the WIYN 3.5m telescope. Images in B,V,R, & H-alpha reveal a galaxy that is fraught with asymmetries. From isophote fits we discover that the bar center is not coincident with the center of the outer isophotes nor with the dynamical center (from Pisano et al. 1998). Cuts across the spiral arms reveal that the northern arms are distinctly different from the southern arm. The southern arm not only appears more coherent, but the peaks in stellar and H-alpha emission are found to be coincident with those of the HI distribution, while no such consistency is present in the northern disk. We also examine the gas surface density criterion for massive star formation in NGC 925, and find that its behavior is more consistent with that for irregular galaxies, than with late-type spirals. In particular, star formation persists beyond the radius at which the gas surface density falls below the predicted critical value for star formation for late-type spirals. Such properties are characteristic of Magellanic spirals, but are present at a less dramatic level in NGC 925, a late-type spiral.Comment: accepted for publication in the August 2000 Astronomical Journal 12 pages, 3 tables, 14 figure

    Galactic bulge formation as a maximum intensity starburst

    Get PDF
    Properties of normal galactic star formation, including the density dependence, threshold density, turbulent scaling relations, and clustering properties, are applied to the formation of galactic bulges. One important difference is that the bulge potential well is too deep to have allowed self-regulation or blow-out by the pressures from young stars, unlike galactic disks or dwarf galaxies. As a result, bulge formation should have been at the maximum rate, which is such that most of the gas would get converted into stars in only a few dynamical time scales, or ~10^8 years. The gas accretion phase can be longer than this, but once the critical density is reached, which depends primarily on the total virial density from dark matter, the formation of stars in the bulge should have been extremely rapid. Such three-dimensional star formation should also have formed many clusters, like normal disk star formation today. Some of these clusters may have survived as old globulars, but most got dispersed, although they might still be observable as concentrated streams in phase space.Comment: 10 pages, 1 figure, scheduled for ApJ, vol. 517, May 20, 199
    corecore