143 research outputs found
Recommended from our members
Significant groundwater contribution to Antarctic ice streams hydrologic budget
Satellite observations have revealed active hydrologic systems beneath Antarctic ice streams, but sources and sinks of water within these systems are uncertain. Here we use numerical simulations of ice streams to estimate the generation, flux, and budget of water beneath five ice streams on the Siple Coast. We estimate that 47% of the total hydrologic input (0.98 km3 yr−1) to Whillans (WIS), Mercer (MIS), and Kamb (KIS) ice streams comes from the ice sheet interior and that only 8% forms by local basal melting. The remaining 45% comes from a groundwater reservoir, an overlooked source in which depletion significantly exceeds recharge. Of the total input to Bindschadler (BIS) and MacAyeal (MacIS) ice streams (0.56 km3 yr−1), 72% comes from the interior, 19% from groundwater, and 9% from local melting. This contrasting hydrologic setting modulates the ice streams flow and has important implications for the search for life in subglacial lakes.This work was carried out with support from the Isaac Newton Trust, Cecil H. and Ida M. Green Foundation and Natural Environment Research Council (grant NE/E005950/1 and NE/J005800/1).This is the final version of the article. It was originally published in Geophysical Research Letters and is also available from the Wiley website at http://onlinelibrary.wiley.com/doi/10.1002/2014GL059250/abstract. © American Geophysical Union 201
Recommended from our members
Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here, we use a three-dimensional ice-sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice-flow instability, which reorganizes all ice streams in this region, leading to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea-level by 5mm this century. Better constraints on future sea-level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.This work was carried out with support from the Isaac Newton trust, Cecil H. and Ida M. Green Foundation and Natural Environment Research Council (grants NE/E005950/1 and NE/J005800/1). SFP was supported by the U.S. Department of Energy Office of Science, Biological and Environmental Research program. ST acknowledges support from National Science Foundation (grant #0338295). SPC was supported by funding from the Cryospheric Sciences program of NASA and HAF was supported by funding from NSF (grant ANT-0838885 (Fricker)). The source code for the results presented can be obtained by contacting the corresponding author directlyThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GL06578
Fluid and Diffusion Limits for Bike Sharing Systems
Bike sharing systems have rapidly developed around the world, and they are
served as a promising strategy to improve urban traffic congestion and to
decrease polluting gas emissions. So far performance analysis of bike sharing
systems always exists many difficulties and challenges under some more general
factors. In this paper, a more general large-scale bike sharing system is
discussed by means of heavy traffic approximation of multiclass closed queueing
networks with non-exponential factors. Based on this, the fluid scaled
equations and the diffusion scaled equations are established by means of the
numbers of bikes both at the stations and on the roads, respectively.
Furthermore, the scaling processes for the numbers of bikes both at the
stations and on the roads are proved to converge in distribution to a
semimartingale reflecting Brownian motion (SRBM) in a -dimensional box,
and also the fluid and diffusion limit theorems are obtained. Furthermore,
performance analysis of the bike sharing system is provided. Thus the results
and methodology of this paper provide new highlight in the study of more
general large-scale bike sharing systems.Comment: 34 pages, 1 figure
Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers
The nitric oxide synthase (NOS) pathway has been clearly demonstrated to regulate angiogenesis. Increased levels of NO correlate with tumour growth and spreading in different experimental and human cancers. Drugs interfering with the NOS pathway may be useful in angiogenesis-dependent tumours. The aim of this study was to pharmacologically characterise certain ruthenium-based compounds, namely NAMI-A, KP1339, and RuEDTA, as potential NO scavengers to be used as antiangiogenic/antitumour agents. NAMI-A, KP1339 and RuEDTA were able to bind tightly and inactivate free NO in solution. Formation of ruthenium-NO adducts was documented by electronic absorption, FT-IR spectroscopy and (1)H-NMR. Pretreatment of rabbit aorta rings with NAMI-A, KP1339 or RuEDTA reduced endothelium-dependent vasorelaxation elicited by acetylcholine. This effect was reversed by 8-Br-cGMP. The key steps of angiogenesis, endothelial cell proliferation and migration stimulated by vascular endothelial growth factor (VEGF) or NO donor drugs, were blocked by NAMI-A, KP1339 and RuEDTA, these compounds being devoid of any cytotoxic activity. When tested in vivo, NAMI-A inhibited angiogenesis induced by VEGF. It is likely that the antitumour properties previously observed for ruthenium-based NO scavengers, such as NAMI-A, are related to their NO-related antiangiogenic propertie
The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor
Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans
Disease surveillance using a hidden Markov model
<p>Abstract</p> <p>Background</p> <p>Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance which is suitable for use with sparse small area count data and requires little baseline data.</p> <p>Methods</p> <p>A Bayesian HMM was designed to monitor routinely collected notifiable disease data that are aggregated by residential postcode. Semi-synthetic data were used to evaluate the algorithm and compare outbreak detection performance with the established Early Aberration Reporting System (EARS) algorithms and a negative binomial cusum.</p> <p>Results</p> <p>Algorithm performance varied according to the desired false alarm rate for surveillance. At false alarm rates around 0.05, the cusum-based algorithms provided the best overall outbreak detection performance, having similar sensitivity to the HMMs and a shorter average time to detection. At false alarm rates around 0.01, the HMM algorithms provided the best overall outbreak detection performance, having higher sensitivity than the cusum-based Methods and a generally shorter time to detection for larger outbreaks. Overall, the 14-day HMM had a significantly greater area under the receiver operator characteristic curve than the EARS C3 and 7-day negative binomial cusum algorithms.</p> <p>Conclusion</p> <p>Our findings suggest that the HMM provides an effective method for the surveillance of sparse small area notifiable disease data at low false alarm rates. Further investigations are required to evaluation algorithm performance across other diseases and surveillance contexts.</p
A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition
Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin–trypanothione reductase–NADPH complex was solved at 3.5 Å resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis
In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis
Leishmaniasis is an important public health problem with an estimated annual incidence of 1.5 million of new human cases of cutaneous leishmaniasis and 500,000 of visceral leishmaniasis. Treatment of the diseases is limited by toxicity and parasite resistance to the drugs currently in use, validating the need to develop new leishmanicidal compounds. We evaluated the killing by the palladacycle complex DPPE 1.2 of Leishmania (Leishmania) amazonensis, an agent of human cutaneous leishmaniasis in the Amazon region, Brazil. DPPE 1.2 destroyed promastigotes of L. (L.) amazonensis in vitro at nanomolar concentrations, whereas intracellular amastigotes were killed at drug concentrations 10-fold less toxic than those displayed to macrophages. L. (L.) amazonensis-infected BALB/c mice treated by intralesional injection of DPPE 1.2 exhibited a significant decrease of foot lesion sizes and a 97% reduction of parasite burdens when compared to untreated controls. Additional experiments indicated the inhibition of the cathepsin B activity of L. (L.) amazonensis amastigotes by DPPE 1.2. Further studies are needed to explore the potential of DPPE 1.2 as an additional option for the chemotherapy of leishmaniasis
Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein–coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions
- …