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Abstract Satellite observations have revealed active hydrologic systems beneath Antarctic ice streams,
but sources and sinks of water within these systems are uncertain. Here we use numerical simulations of
ice streams to estimate the generation, flux, and budget of water beneath five ice streams on the Siple Coast.
We estimate that 47% of the total hydrologic input (0.98 km3 yr�1) to Whillans (WIS), Mercer (MIS), and Kamb
(KIS) ice streams comes from the ice sheet interior and that only 8% forms by local basal melting. The
remaining 45% comes from a groundwater reservoir, an overlooked source in which depletion significantly
exceeds recharge. Of the total input to Bindschadler (BIS) and MacAyeal (MacIS) ice streams (0.56 km3 yr�1),
72% comes from the interior, 19% from groundwater, and 9% from local melting. This contrasting hydrologic
setting modulates the ice streams flow and has important implications for the search for life in subglacial lakes.

1. Introduction

Discharge of ice from the Antarctic ice sheet is governed by ice streams, which are fast flowing arteries, tens
of kilometers wide, several-hundred-kilometers long, and responsible for nearly all of the Antarctic
contribution to sea level rise [Rignot et al., 2008; Shepherd et al., 2012]. Studies have shown that the fast flow
of ice streams (~500myr�1 or higher) is facilitated by weak subglacial sediment [Blankenship et al., 1986],
which provides little frictional resistance [Kamb, 1991]. Although geophysical surveys indicate that this type
of subglacial sediment is widespread [Blankenship et al., 1986; Rooney et al., 1987; Smith, 1997], so far this has
only been directly observed at the Siple Coast, where samples collected in boreholes confirmed it to be till
[Engelhardt et al., 1990], a glacially produced material with highly non-linear rheology [Kamb, 1991; Tulaczyk
et al., 2000a]. The incorporation of non-linear till rheology in numerical ice sheet models has provided key
new insights to the dynamics of ice streams [Bougamont et al., 2011], explaining, e.g., their semi-periodic
stagnation and reactivation on the Siple Coast [Hulbe and Fahnestock, 2007; Catania et al., 2012]. Less certain,
however, is the effect of water flowing between interconnected subglacial lakes and along the ice stream
beds [Gray et al., 2005; Fricker et al., 2007; Carter and Fricker, 2012].

This work uses a higher-order ice flow model constrained by Bedmap2 ice thickness and bedrock geometry
[Fretwell et al., 2013] to reproduce flow and basal conditions for ice streams on the Siple Coast. Using a
numerical inversion technique, we convert surface velocities observed in 1997 [Joughin et al., 2002] and 2009
[Rignot et al., 2011] into two independently derived maps of basal traction. The latter are combined with the
Coulomb plastic till rheology [Tulaczyk et al., 2000a, 2000b] in order to estimate shear strength and storage of
water in the till. By routing water at the bed, we obtain hydrologic pathways that connect observed locations of
subglacial lakes. We complete the analysis by quantifying the hydrologic budget for each ice stream based on
(1) water produced and consumed by basal melting and freezing, (2) water entering and leaving the subglacial
till layer, and (3) flow of water along the ice-till interface. While the contribution from (1) is similar for all ice
streams, the contributions from (2) and (3) differ markedly, with high groundwater fluxes at MIS, WIS, and KIS,
while BIS and MacIS are influenced predominantly by a large supply of water from the ice sheet interior.

2. Methods
2.1. Ice Flow Model

In this work we use the higher-order Community Ice Sheet Model (CISM) [Bougamont et al., 2011; Price et al., 2011;
Bindschadler et al., 2013] to simulate flow of ice streams on the Siple Coast of Antarctica. The model solves the
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conservation of momentum, mass, and thermal
energy, as described in Bougamont et al. [2011],
and is applied with a 5 km spatial resolution. We
define the extent of MIS, WIS, KIS, BIS, and MacIS
according to the area covering their fast flowing
trunks as well as the tributaries that feed them
(Figure 1a). The latter are specified by surface
velocity of 50–200myr�1, while trunks are defined
by surface velocity>200myr�1. The study of KIS is
limited to its tributaries (henceforth KIStrib) because
its trunk is stagnant (ice flow <10myr�1).

To obtain realistic flow in the model, we use an
inversion technique by which surface velocity is
iterated [as explained in Price et al., 2011] toward
values observed in (A) 1997 [Joughin et al., 2002]
and (B) 2009 [Rignot et al., 2011]. With constant
model geometry [Fretwell et al., 2013], climate
[Arthern et al., 2006; Comiso, 2000], and
geothermal heat flux [Maule et al., 2005; Shapiro
and Ritzwoller, 2004], we converge ice
temperature, effective viscosity, and velocity
fields to an equilibrium in which basal sliding and
internal ice deformation together reproduce the
observed surface velocity (see Text S1 in
Auxiliary Materials).

2.2. Basal Thermal Regime

Rates of basal melting ṁ (negative for freezing)
are calculated from the basal heat budget:

ṁ¼ τbUb þ G� kθb
ρL

(1)

where τb and Ub are basal traction and sliding
velocity, which collectively comprise frictional
heat; G is geothermal heat flux; k and θb are
thermal conductivity of ice and vertical basal ice
temperature gradient, which yield the
conductive heat loss; ρ is ice density; and L is
specific latent heat of fusion.

2.3. Till Properties

Basal traction values obtained from the two
model inversions are used to estimate till shear
strength and the corresponding till void ratio.
The latter is a property directly related to porosity
and defined as the volumetric ratio of pores and
solids in the till layer. This analysis is based on two

specific till rheological characteristics, both established from laboratory analysis of samples collected from
beneath the ice streams [Tulaczyk et al., 2000a]. The first is that till shear strength, τf, is a linear function of the
effective normal stress, N, i.e., the stress exerted by the direct contact between solid particles. Henceforth,
τf∝ f N where f = tanϕ is a constant defined by the friction angle of the till, which is 24±0.3° [Tulaczyk et al.,
2000a]. The second characteristic is that till compressibility can be described by a logarithmic function relating
the till void ratio, e, to the effective normal stress. Thus, e∝ C ln(N) where C is the constant of compressibility,
which has a relatively narrow range of values (0.12–0.15) when the till is normally consolidated. We exclude
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Figure 1. (a) Surface velocity (m yr�1) of ice streams on the
Siple Coast, as observed by satellite in 2009 (color scale) and
reproduced with CISM (white contours). White dots show
locations of borehole drill sites referred to in text (UpB: UpB
camp; Uni: Unicorn; BS: Byrd station; SD: Siple Dome; UpD: UpD
camp). Inset shows location of study area. (b) Modeled rates of
basal melting and freezing (mmyr�1) beneath MIS, WIS, KIStrib,
BIS, and MacIS, when model reproduces surface velocities
shown in Figure 1a. Solid black lines show the zero contour.
Dashed magenta lines denote boundaries between MIS and
WIS and between BIS and MacIS. Dark red area is the Ross Ice
Shelf, where ice is no longer in contact with the bed. (c) Till void
ratios (dimensionless) calculated from basal traction values,
when model reproduces surface velocities shown in Figure 1a.
Axes (x,y) show distance (km) in a polar stereographic grid with
reference to 76.727°S and 141.53°W.
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significant over-consolidation as a possibility given the observed weak and highly porous state of the till
[Tulaczyk et al., 2000a, 2001]. Combining the two relations in an empirical format yields e=� ln(τf /a)/b where
a= 944×106 Pa and b= 21.7 are previously established constants [Tulaczyk et al., 2000b]. We expect errors from
using these rheological parameters over a wide region to be small because the till is known to be regionally
homogeneous [Kamb, 2001]. The assumed Coulomb plastic till rheology [Tulaczyk et al., 2000a] is widely
accepted [Clarke, 2005], and supported by similar rheological properties of tills found in a variety of other glacial
settings [Clarke, 1987; Hooke et al., 1997; Iverson et al., 1998; Rathbun et al., 2008].

2.4. Subglacial Hydrology

To constrain the flow of water along the ice stream beds, we use the hydrological model included in CISM.
This model component directs water down the hydraulic potential surface using a steady-state directional
routing algorithm, where cells with lower hydraulic potential receive a fraction of the outflow, depending on
the slope of the hydraulic potential surface. The hydrological model is identical to the one used previously to
study subglacial hydrology at the Siple Coast [Carter and Fricker, 2012; Carter et al., 2013].

3. Results
3.1. Basal Melting and Freezing

The modeled distribution of basal melting and freezing, when the model reproduces flow as observed in
2009, is shown in Figure 1b. The net basal meltwater production is �0.01, �0.21, +0.04, �0.11, and
�0.11 km3 yr�1 for MIS, WIS, KIStrib, BIS, and MacIS, respectively (Table 1). The frictional heat term in equation
(1) is captured well in our model because flow is iterated toward observed surface velocities with an average
misfit of just 6myr�1 (Figure 1a), which is small relative to the average magnitude of flow (187myr�1). Flow
in the modeled ice streams occurs predominantly by sliding at the bed, which is consistent with in situ
measurements in a borehole [Engelhardt and Kamb, 1998]. When basal traction in our model is converted to
till shear strength, we obtain values in good agreement with observations. We estimate the shear strength of
till beneath the trunk of WIS to average 5 kPa, which is within range of measurements made at this location
(0.02–7.9 kPa [Kamb, 2001]). Overall, we estimate the error of the frictional heat term to be less than 10%.

The conductive heat loss at the ice stream beds is proportional to the basal ice temperature gradient
(equation (1)). We thus compare the modeled basal temperature gradients at locations where such
gradients have been measured [Engelhardt, 2004], including UpB camp and Unicorn on WIS, Siple Dome
between KIS and BIS, Byrd Station, and UpD camp on BIS (Figure 1a). We exclude measurements from
UpC camp on KIS trunk because ice temperature at this site has not equilibrated to stagnation of flow
170years ago [Joughin et al., 2002]. For the other drill sites, our model predicts basal ice temperature gradients,
which are either within range (UpB, Byrd, andUnicorn) or close to (Siple Dome andUpD)measured values (Table S1).
The overall error between modeled and observed temperature gradients averages just 6%, which shows that our
model captures the conductive heat loss well.

Table 1. Hydrologic Budgets for West Antarctic Ice Streams

Hydrologic Budget Ice Till Basal Water System

Ice Stream Areaa km2 Meltb km3 yr�1 Freezeb km3 yr�1 Water Outc km3 yr�1 Water Inc km3 yr�1 Inflowd km3 yr�1 Outflowd km3 yr�1

MIS 7,000 0.01 (0.01) �0.02 (�0.03) 0.03 ± 0.01 �0.01± 0.00 0.11 �0.12
WIS 43,000 0.02 (0.03) �0.23 (�0.23) 0.35 ± 0.11 �0.09± 0.03 0.35 �0.43
KIStrib 14,000 0.04 (0.02) �0.00 (�0.02) 0.05 ± 0.02 �0.07± 0.02
BIS 25,000 0.01 (0.00) �0.12 (�0.15) 0.05 ± 0.02 �0.05± 0.02 0.20 �0.09
MacIS 30,000 0.04 (0.03) �0.15 (�0.18) 0.06 ± 0.02 �0.04± 0.01 0.21 �0.10
Sum 0.13 (0.09) �0.53 (�0.61) 0.55 ± 0.16 �0.27± 0.08 0.86 �0.74

aArea of each ice stream including trunk and tributaries.
bMelt (>0) and freeze (<0) are the annual volumes of water, produced by basal melting and consumed by basal freezing. The uncertainty is small (±6%) due to

good agreement betweenmodel and observations. Numbers in brackets are based on satellitemagnetic geothermal heat flux values, not used in analysis because
they underestimate geothermal heat flow at KIStrib, BIS, and MacIS.

cWater out (>0) and water in (<0) are the annual volumes of water flowing out of and into the till layer. The uncertainty is ±30% due to variation in till layer thickness.
dInflow (>0) and outflow (<0) are the annual volumes of water entering and leaving each ice stream laterally via a regional basal water system.
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The geothermal heat flux, however, is more uncertain. We thus conduct our analysis using two different data
sets: one with geothermal heat flux values inferred from a global seismic model [Shapiro and Ritzwoller, 2004]
and another based on magnetic anomalies [Maule et al., 2005]. Despite considerable differences in the
estimated geothermal heat flux (Figure 2a), we obtain very similar distributions of basal melting and freezing
(Figure 2b). This shows how the geothermal heat flux uncertainty is compensated by frictional heating.
The only region where the geothermal heat flux uncertainty appears to significantly influence modeled rates
of basal melting is KIStrib, but these tributaries form a relatively small part of the investigated area (12%) as
well as the total regional meltwater production (Table 1). Therefore, the uncertainty does not significantly
influence our overall results.

In the forthcoming analysis, we use the seismically inferred geothermal heat flux data because these feature
high values (>100mWm�2) in the tributaries of BIS and MacIS (Figure S1), a region where ice core studies
indicate high geothermal heat flow [Fudge et al., 2013]. A robust outcome of our model is that freezing
outweighs melting beneath all ice streams (Figure 1b). This outcome is consistent with the observation of
15m thick accreted basal ice layer in KIS [Christoffersen et al., 2010] and a similar layer in BIS [Engelhardt, 2004].
We note, however, that it differs from a previous study, which indicated localized high melt rates beneath BIS
and MacIS [Joughin et al., 2004]. The latter are largely absent in our model outputs, but we attribute the
difference to the higher-order stresses included in our model as well as our use of Bedmap2, which features
more accurate bed topography and ice thickness compared to its predecessor, specifically in the region
containing BIS and MacIS (Figure S2).
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3.2. Flow of Water Into and Out of the Till Layer

There are no previous estimates of the annual volumes of water flowing into and out of the till layer beneath
the ice streams, although such fluxes have the potential to be a significant part of the regional hydrologic
balance. We address this shortcoming by converting basal traction values from the twomodel inversions into
maps of till shear strength and till void ratio. When 2009 velocity data are used in our model, we find that void
ratios average 0.57, 0.60, 0.56, and 0.51 in the till beneath the trunks of MIS, WIS, BIS, and MacIS (Figure 1c).
The void ratios of till beneath the tributaries (0.44–0.48) are 12–20% lower, indicating stronger till there than
beneath the trunks.

A comparison of the two model inversions demonstrates how changes in ice flow (Figure 3a) have
occurred in response to physical changes at the bed (Figure 3b). At the trunks of MIS and WIS, basal
traction increased by 14% and 22% on average. This basal strengthening was a result of substantial till
consolidation. Till void ratios decreased by up to 0.02 at MIS and by up to 0.08 at WIS. Till void ratios also
decreased in the tributaries, where basal strengthening amounted to 7% (MIS) and 9% (WIS). Our study
therefore demonstrates that the reported slowdown of MIS and WIS [Joughin et al., 2005] is caused by
significant till strengthening, an outcome supported by independent force balance analysis of GPS data
collected on WIS [Beem et al., 2014].

In order to estimate the annual volume of water entering or leaving the till beneath each ice stream, we need
to first estimate the till layer thickness. The latter requires seismic data, which are spatially limited, so we
assume for simplicity that till thickness has a normal distribution, with a range bound by end-member values
reported in previous studies (i.e., from nil [Rooney et al., 1987] and up to 20m [Peters et al., 2006]). This yields a
characteristic till layer with a mean thickness of 10m and a standard deviation of 3m. To estimate the flow of
water into and out of the till layer, we combine this till thickness (10 ± 3m) with the detected till void ratio
change. The assumed vertically uniform distribution of till void ratios is consistent with such distribution to a
depth of at least 3m into the till layer at WIS [Tulaczyk et al., 2001]. In this manner, we estimate net outflows of
till pore water at MIS (0.02 ± 0.006 km3 yr�1) as well as WIS (0.26 ± 0.08 km3 yr�1) (Table 1), whereas there is a
net inflow of water to the till layer at KIStrib (�0.02 ± 0.006 km3 yr�1) (Table 1).

We find entirely different basal conditions at BIS and MacIS. At BIS, inflow of water to the till layer
approximately balances the outflow, even though high rates of basal freezing yield �0.11 km3 yr�1 in the
hydrologic budget (Table 1). A net reduction in till void ratios at MacIS indicates outflow of till pore water
corresponding to 0.02 ± 0.004 km3 yr�1. The associated till compaction is equivalent to a 2% increase in
basal traction, which may explain why surface velocity on this ice stream decreased by up to 46m yr�1

between 1997 and 2009 (Figure 3a). Although the change at MacIS resembles those at MIS andWIS, outflow
of pore water from the till layer cannot explain the estimated net loss of water due to high rates of
freezing (Table 1).
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3.3. Flow of Water Along the Ice-Till
Interface

In contrast to previous hydrologic studies
in which water was routed according to
modeled rates of basal melting and
freezing [Carter and Fricker, 2012; Carter
et al., 2013; Le Brocq et al., 2009], we also
route pore water rejected from the till
(Table 1). The hydrologic experiment
reveals anastomosing channels and
anabranches within the subglacial
catchment of each ice stream, and major
flow paths coincide with observed
networks of interconnected subglacial
lakes (Figure 4). Water is routed from KIStrib
to WIS, consistent with observed
connectivity of subglacial lakes in this
region [Carter et al., 2013]. The modeled
fluxes also indicate outflow of water across
the grounding lines. At MIS and WIS, these
outflows amount to 0.12 and
0.43 km3yr�1. This is more than twice the
outflow fromBIS (0.09 km3yr�1) andMacIS
(0.10km3yr�1), largely because of the till

layer’s porewater contribution (Table 1). Because the surface velocity data used in our inversions do not include the
entire drainage basins of the ice streams, inflow of water from farther inland is needed to close the hydrologic
budgets. According to ourmodel, local sources account for only 28% of the total hydrologic input to BIS andMacIS
(Table 1). The remaining 72% is assumed to come from the ice sheet interior. For MIS, WIS, and KIStrib, local sources
account for 53% of all inputs, while 47% comes from the ice sheet interior (Table 1).

4. Discussion and Conclusions

Whether ice streams are primarily influenced by till mechanics or subglacial hydrology has been vigorously
debated, with paucity of data with which to test hypotheses leading to contrasting models and views
[Alley, 1996; Tulaczyk et al., 2000b; Robel et al., 2013]. By quantifying hydrologic budgets, our study helps
resolve this debate. Of the total hydrologic inputs to MIS, WIS, and KIStrib (0.98 km

3 yr�1), 47% is inflow of
water from the ice sheet interior, while 45% comes from depletion of groundwater and only 8% from local
basal ice melting (Table 1). The largest net effects, however, come from basal freezing, which far surpasses
basal melting, and the depletion of the groundwater reservoir, which significantly exceeds its recharge
(Table 1). Flow of water into the basal water system is countered by outflow at the grounding line. This
confirms strong ice-till interactions, as previously hypothesized [Tulaczyk et al., 2000b], and we conclude that
till mechanics exert the primary control on the flow of these ice streams. For BIS and MacIS, we estimate
hydrologic inputs to amount to 0.56 km3 yr�1, with the till layer contributing 19%, while local basal ice
melting and inflow of water from the ice sheet interior contribute 9% and 72%, respectively. There, the strong
offset between basal freezing and melting is countered primarily by a strong offset between inflow to and
outflow from the basal water system, while groundwater depletion is roughly balanced by recharge (Table 1).
Hence, we conclude that these ice streams are strongly influenced by water transported to them from the ice
sheet interior via a regional and through-going basal water system. The subdued response of the till layer
beneath BIS and MacIS to the high rates of basal freezing there indicates that the basal water system is
spatially widespread and thus of the distributed type. It also appears to be continuously fed by water
produced near the onset of these ice streams. Although we can only infer this hydrologic source, its presence
is consistent with high geothermal heat flux in this region [Fudge et al., 2012; Fudge et al., 2013]. It is also in
agreement with observed extensive subglacial storage of water [Peters et al., 2007] and proposed active
subglacial volcanism [Behrendt et al., 2004].
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The depletion of till pore water at MIS and WIS indicates that a substantial fraction of water flowing in the
basal water system there has been previously stored in till. This finding may have important implications for
the search for life in subglacial lakes because till pore water in the Siple Coast region has a much higher solute
concentration than subglacial meltwater derived by direct melting of basal ice [Skidmore et al., 2010].
The rates of groundwater recharge in our model yield residence times of till pore water on the order of
1000–10,000 years, providing a long period of time for biogeochemical weathering to result in solute
enrichment [Skidmore et al., 2010; Wadham et al., 2010]. Due to significant groundwater release
predicted by our simulations, water transported in the basal drainage system at MIS, WIS, and KIStrib,
including Subglacial Lakes Whillans explored in situ in 2013 (www.wissard.org), may therefore be
particularly enriched in dissolved elements and compounds, some of which may serve as nutrients for
microbial life. In contrast, water in the basal zone of BIS and MacIS may, according to our model, contain
fewer biogeochemical weathering products because less pore water flows out of the till layer there.

Our study highlights potential large benefits from stronger integration of Earth observation data in numerical
ice sheet models. Prediction of sea level rise over the coming decades and centuries inevitably relies on
these models having the best possible parameterization of the subglacial environment, which dictates the
speed at which ice sheets slide over their beds. The results presented here demonstrate that significant
changes can take place in this environment over periods as short as 12 years.
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