8,392 research outputs found
Effect of environment on thermal control coatings
Thermal control coatings, cathodic processes on semiconductor zinc oxide, and semiconductor electrolyte interface capacitanc
Statistical Mechanics of Linear and Nonlinear Time-Domain Ensemble Learning
Conventional ensemble learning combines students in the space domain. In this
paper, however, we combine students in the time domain and call it time-domain
ensemble learning. We analyze, compare, and discuss the generalization
performances regarding time-domain ensemble learning of both a linear model and
a nonlinear model. Analyzing in the framework of online learning using a
statistical mechanical method, we show the qualitatively different behaviors
between the two models. In a linear model, the dynamical behaviors of the
generalization error are monotonic. We analytically show that time-domain
ensemble learning is twice as effective as conventional ensemble learning.
Furthermore, the generalization error of a nonlinear model features
nonmonotonic dynamical behaviors when the learning rate is small. We
numerically show that the generalization performance can be improved remarkably
by using this phenomenon and the divergence of students in the time domain.Comment: 11 pages, 7 figure
catalysis
The development of model catalyst systems for heterogeneous catalysis going
beyond the metal single crystal approach, including phenomena involving the
limited size of metal nanoparticles supported on oxide surfaces, as well as
the electronic interaction through the oxide–metal interface, is exemplified
on the basis of two case studies from the laboratory of the authors. In the
first case study the reactivity of supported Pd nanoparticles is studied in
comparison with Pd single crystals. The influence of carbon contaminants on
the hydrogenation reaction of unsaturated hydrocarbons is discussed. Carbon
contaminants are identified as a key parameter in those reactions as they
control the surface and sub-surface concentration of hydrogen on and in the
particles. In the second case study, scanning probe techniques are used to
determine electronic and structural properties of supported Au particles as a
function of the number of Au atoms in the particle. It is demonstrated how
charge transfer between the support and the particle determines the shape of
nanoparticles and a concept is developed that uses charge transfer control
through dopants in the support to understand and design catalytically active
materials
Learning from Minimum Entropy Queries in a Large Committee Machine
In supervised learning, the redundancy contained in random examples can be
avoided by learning from queries. Using statistical mechanics, we study
learning from minimum entropy queries in a large tree-committee machine. The
generalization error decreases exponentially with the number of training
examples, providing a significant improvement over the algebraic decay for
random examples. The connection between entropy and generalization error in
multi-layer networks is discussed, and a computationally cheap algorithm for
constructing queries is suggested and analysed.Comment: 4 pages, REVTeX, multicol, epsf, two postscript figures. To appear in
Physical Review E (Rapid Communications
Controlling the charge state of single Mo dopants in a CaO film
Recent experiments have demonstrated that tiny amounts of Mo impurities give rise to drastic changes in the adsorption characteristic of a wide-gap CaO(001) film. In this scanning tunneling microscopy (STM) and density functional theory paper, we elucidate the underlying mechanism by analyzing the energy levels of the Mo dopants as a function of their oxidation state and depth below the surface. We show that Mo2+ ions in CaO subsurface layers can be reversibly charged and discharged by inducing local band-bending effects with the STM tip. A similar charge switching is not possible for Mo species in a higher oxidation state, as their highest-occupied molecular orbitals are located well below the onset of the CaO conduction band. The easiness of charge switching in Mo2+ ions explains the remarkable chemical properties of doped CaO films, as it renders the material a strong electron donor to adsorbates bound to the oxide surface
A detailed QCD analysis of twist-3 effects in DVCS observables
In this paper I present a detailed QCD analysis of twist-3 effects in the
Wandzura-Wilczek (WW) approximation in deeply virtual Compton scattering (DVCS)
observables for various kinematical settings, representing the HERA, HERMES,
CLAS and the planned EIC (electron-ion-collider) experiments. I find that the
twist-3 effects in the WW approximation are almost always negligible at
collider energies but can be large for low Q^2 and smaller x_bj in observables
for the lower energy, fixed target experiments directly sensitive to the real
part of DVCS amplitudes like the charge asymmetry (CA). Conclusions are then
drawn about the reliability of extracting twist-2 generalized parton
distributions (GPDs) from experimental data and a first, phenomenological,
parameterization of the LO and NLO twist-2 GPD , describing all the
currently available DVCS data within the experimental errors is given.Comment: 18 pages, 21 figures, uses Revtex4, final version to be published in
PRD, minor revisions due to referee suggestion
Dynamic ductile to brittle transition in a one-dimensional model of viscoplasticity
We study two closely related, nonlinear models of a viscoplastic solid. These
models capture essential features of plasticity over a wide range of strain
rates and applied stresses. They exhibit inelastic strain relaxation and steady
flow above a well defined yield stress. In this paper, we describe a first step
in exploring the implications of these models for theories of fracture and
related phenomena. We consider a one dimensional problem of decohesion from a
substrate of a membrane that obeys the viscoplastic constitutive equations that
we have constructed. We find that, quite generally, when the yield stress
becomes smaller than some threshold value, the energy required for steady
decohesion becomes a non-monotonic function of the decohesion speed. As a
consequence, steady state decohesion at certain speeds becomes unstable. We
believe that these results are relevant to understanding the ductile to brittle
transition as well as fracture stability.Comment: 10 pages, REVTeX, 12 postscript figure
Self-Interaction and Gauge Invariance
A simple unified closed form derivation of the non-linearities of the
Einstein, Yang-Mills and spinless (e.g., chiral) meson systems is given. For
the first two, the non-linearities are required by locality and consistency; in
all cases, they are determined by the conserved currents associated with the
initial (linear) gauge invariance of the first kind. Use of first-order
formalism leads uniformly to a simple cubic self-interaction.Comment: Missing last reference added. 9 pages, This article, the first paper
in Gen. Rel. Grav. [1 (1970) 9], is now somewhat inaccessible; the present
posting is the original version, with a few subsequent references included.
Updates update
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions
With the help of EXACT ground states obtained by a polynomial algorithm we
compute the domain wall energy at zero-temperature for the bond-random and the
site-random Ising spin glass model in two dimensions. We find that in both
models the stability of the ferromagnetic AND the spin glass order ceases to
exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the
vicinity of this critical point, the size and concentration dependency of the
first AND second moment of the domain wall energy are, for both models,
described by a COMMON finite size scaling form. Moreover, below this
concentration the stiffness exponent turns out to be slightly negative \theta_S
= -0.056(6) indicating the absence of any intermediate spin glass phase at
non-zero temperature.Comment: 7 pages Latex, 5 postscript-figures include
- …
