11,996 research outputs found

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure

    Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler

    Full text link
    An analysis of single-electron orbits in combined coaxial wiggler and axial guide magnetic fields is presented. Solutions of the equations of motion are developed in a form convenient for computing orbital velocity components and trajectories in the radially dependent wiggler. Simple analytical solutions are obtained in the radially-uniform-wiggler approximation and a formula for the derivative of the axial velocity vv_{\|} with respect to Lorentz factor γ\gamma is derived. Results of numerical computations are presented and the characteristics of the equilibrium orbits are discussed. The third spatial harmonic of the coaxial wiggler field gives rise to group IIIIII orbits which are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.

    Branching Instabilities in Rapid Fracture: Dynamics and Geometry

    Full text link
    We propose a theoretical model for branching instabilities in 2-dimensional fracture, offering predictions for when crack branching occurs, how multiple cracks develop, and what is the geometry of multiple branches. The model is based on equations of motion for crack tips which depend only on the time dependent stress intensity factors. The latter are obtained by invoking an approximate relation between static and dynamic stress intensity factors, together with an essentially exact calculation of the static ones. The results of this model are in good agreement with a sizeable quantity of experimental data.Comment: 9 pages, 11 figure

    Learning from Minimum Entropy Queries in a Large Committee Machine

    Full text link
    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.Comment: 4 pages, REVTeX, multicol, epsf, two postscript figures. To appear in Physical Review E (Rapid Communications

    catalysis

    Get PDF
    The development of model catalyst systems for heterogeneous catalysis going beyond the metal single crystal approach, including phenomena involving the limited size of metal nanoparticles supported on oxide surfaces, as well as the electronic interaction through the oxide–metal interface, is exemplified on the basis of two case studies from the laboratory of the authors. In the first case study the reactivity of supported Pd nanoparticles is studied in comparison with Pd single crystals. The influence of carbon contaminants on the hydrogenation reaction of unsaturated hydrocarbons is discussed. Carbon contaminants are identified as a key parameter in those reactions as they control the surface and sub-surface concentration of hydrogen on and in the particles. In the second case study, scanning probe techniques are used to determine electronic and structural properties of supported Au particles as a function of the number of Au atoms in the particle. It is demonstrated how charge transfer between the support and the particle determines the shape of nanoparticles and a concept is developed that uses charge transfer control through dopants in the support to understand and design catalytically active materials

    A Multivariate Training Technique with Event Reweighting

    Get PDF
    An event reweighting technique incorporated in multivariate training algorithm has been developed and tested using the Artificial Neural Networks (ANN) and Boosted Decision Trees (BDT). The event reweighting training are compared to that of the conventional equal event weighting based on the ANN and the BDT performance. The comparison is performed in the context of the physics analysis of the ATLAS experiment at the Large Hadron Collider (LHC), which will explore the fundamental nature of matter and the basic forces that shape our universe. We demonstrate that the event reweighting technique provides an unbiased method of multivariate training for event pattern recognition.Comment: 20 pages, 8 figure

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201

    Frictional sliding without geometrical reflection symmetry

    Get PDF
    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of macroscopically identical materials, but lack geometrical reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the title, extended analysis in the second par
    corecore