11,996 research outputs found
Studies of a Terawatt X-Ray Free-Electron Laser
The possibility of constructing terawatt (TW) x-ray free-electron lasers
(FELs) has been discussed using novel superconducting helical undulators [5].
In this paper, we consider the conditions necessary for achieving powers in
excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation
code [7]. Steady-state simulations have been conducted using a variety of
undulator and focusing configurations. In particular, strong focusing using
FODO lattices is compared with the natural, weak focusing inherent in helical
undulators. It is found that the most important requirement to reach TW powers
is extreme transverse compression of the electron beam in a strong FODO
lattice. The importance of extreme focusing of the electron beam in the
production of TW power levels means that the undulator is not the prime driver
for a TW FEL, and simulations are also described using planar undulators that
reach near-TW power levels. In addition, TW power levels can be reached using
pure self-amplified spontaneous emission (SASE) or with novel self-seeding
configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure
Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler
An analysis of single-electron orbits in combined coaxial wiggler and axial
guide magnetic fields is presented. Solutions of the equations of motion are
developed in a form convenient for computing orbital velocity components and
trajectories in the radially dependent wiggler. Simple analytical solutions are
obtained in the radially-uniform-wiggler approximation and a formula for the
derivative of the axial velocity with respect to Lorentz factor
is derived. Results of numerical computations are presented and the
characteristics of the equilibrium orbits are discussed. The third spatial
harmonic of the coaxial wiggler field gives rise to group orbits which
are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.
Branching Instabilities in Rapid Fracture: Dynamics and Geometry
We propose a theoretical model for branching instabilities in 2-dimensional
fracture, offering predictions for when crack branching occurs, how multiple
cracks develop, and what is the geometry of multiple branches. The model is
based on equations of motion for crack tips which depend only on the time
dependent stress intensity factors. The latter are obtained by invoking an
approximate relation between static and dynamic stress intensity factors,
together with an essentially exact calculation of the static ones. The results
of this model are in good agreement with a sizeable quantity of experimental
data.Comment: 9 pages, 11 figure
Learning from Minimum Entropy Queries in a Large Committee Machine
In supervised learning, the redundancy contained in random examples can be
avoided by learning from queries. Using statistical mechanics, we study
learning from minimum entropy queries in a large tree-committee machine. The
generalization error decreases exponentially with the number of training
examples, providing a significant improvement over the algebraic decay for
random examples. The connection between entropy and generalization error in
multi-layer networks is discussed, and a computationally cheap algorithm for
constructing queries is suggested and analysed.Comment: 4 pages, REVTeX, multicol, epsf, two postscript figures. To appear in
Physical Review E (Rapid Communications
catalysis
The development of model catalyst systems for heterogeneous catalysis going
beyond the metal single crystal approach, including phenomena involving the
limited size of metal nanoparticles supported on oxide surfaces, as well as
the electronic interaction through the oxide–metal interface, is exemplified
on the basis of two case studies from the laboratory of the authors. In the
first case study the reactivity of supported Pd nanoparticles is studied in
comparison with Pd single crystals. The influence of carbon contaminants on
the hydrogenation reaction of unsaturated hydrocarbons is discussed. Carbon
contaminants are identified as a key parameter in those reactions as they
control the surface and sub-surface concentration of hydrogen on and in the
particles. In the second case study, scanning probe techniques are used to
determine electronic and structural properties of supported Au particles as a
function of the number of Au atoms in the particle. It is demonstrated how
charge transfer between the support and the particle determines the shape of
nanoparticles and a concept is developed that uses charge transfer control
through dopants in the support to understand and design catalytically active
materials
A Multivariate Training Technique with Event Reweighting
An event reweighting technique incorporated in multivariate training
algorithm has been developed and tested using the Artificial Neural Networks
(ANN) and Boosted Decision Trees (BDT). The event reweighting training are
compared to that of the conventional equal event weighting based on the ANN and
the BDT performance. The comparison is performed in the context of the physics
analysis of the ATLAS experiment at the Large Hadron Collider (LHC), which will
explore the fundamental nature of matter and the basic forces that shape our
universe. We demonstrate that the event reweighting technique provides an
unbiased method of multivariate training for event pattern recognition.Comment: 20 pages, 8 figure
Face Detection with Effective Feature Extraction
There is an abundant literature on face detection due to its important role
in many vision applications. Since Viola and Jones proposed the first real-time
AdaBoost based face detector, Haar-like features have been adopted as the
method of choice for frontal face detection. In this work, we show that simple
features other than Haar-like features can also be applied for training an
effective face detector. Since, single feature is not discriminative enough to
separate faces from difficult non-faces, we further improve the generalization
performance of our simple features by introducing feature co-occurrences. We
demonstrate that our proposed features yield a performance improvement compared
to Haar-like features. In addition, our findings indicate that features play a
crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision
201
Frictional sliding without geometrical reflection symmetry
The dynamics of frictional interfaces play an important role in many physical
systems spanning a broad range of scales. It is well-known that frictional
interfaces separating two dissimilar materials couple interfacial slip and
normal stress variations, a coupling that has major implications on their
stability, failure mechanism and rupture directionality. In contrast,
interfaces separating identical materials are traditionally assumed not to
feature such a coupling due to symmetry considerations. We show, combining
theory and experiments, that interfaces which separate bodies made of
macroscopically identical materials, but lack geometrical reflection symmetry,
generically feature such a coupling. We discuss two applications of this novel
feature. First, we show that it accounts for a distinct, and previously
unexplained, experimentally observed weakening effect in frictional cracks.
Second, we demonstrate that it can destabilize frictional sliding which is
otherwise stable. The emerging framework is expected to find applications in a
broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the
title, extended analysis in the second par
Electron localization in defective ceria films: A study with scanning-tunneling microscopy and density-functional theory
- …
