580 research outputs found

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research

    Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering

    Get PDF
    Dewatering systems used for mining and quarrying operations often result in highly artificial and complex groundwater conditions, which can be difficult to characterise and monitor using borehole point sampling approaches. Here automated time-lapse electrical resistivity tomography (ALERT) is considered as a means of monitoring subsurface groundwater dynamics associated with changes in the dewatering regime in an operational sand and gravel quarry. We considered two scenarios: the first was unplanned interruption to dewatering due to a pump failure for a period of several days, which involved comparing ALERT monitoring results before and after groundwater rebound; the second involved a planned interruption to pumping over a period of 6 h, for which near-continuous ALERT monitoring of groundwater rebound and drawdown was undertaken. The results of the second test were analysed using distribution guided clustering (DGC) to provide a more quantitative and objective assessment of changes in the subsurface over time. ALERT successfully identified groundwater level changes during both monitoring scenarios. It provided a more useful indication of the rate of water level rise and maximum water levels than piezometer monitoring results. This was due to the piezometers rapidly responding to pressure changes at depth, whilst ALERT/DGC provided information of slower changes associated with the storage and delayed drainage of water within the sediment. By applying DGC we were able to automatically and quantitatively define changes in the resistivity sections, which correlated well with the direct observations of groundwater at site. For ERT monitoring applications that generate numerous time series, the use of DGC could significantly enhance the efficiency of data interpretation, and provide a means of automating groundwater monitoring through assigning alarm thresholds associated with rapid changes in groundwater conditions

    Model Analysis of Time Reversal Symmetry Test in the Caltech Fe-57 Gamma-Transition Experiment

    Full text link
    The CALTECH gamma-transition experiment testing time reversal symmetry via the E2/M1 mulipole mixing ratio of the 122 keV gamma-line in Fe-57 has already been performed in 1977. Extending an earlier analysis in terms of an effective one-body potential, this experiment is now analyzed in terms of effective one boson exchange T-odd P-even nucleon nucleon potentials. Within the model space considered for the Fe-57 nucleus no contribution from isovector rho-type exchange is possible. The bound on the coupling strength phi_A from effective short range axial-vector type exchange induced by the experimental bound on sin(eta) leads to phi_A < 10^{-2}.Comment: 5 pages, RevTex 3.

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Moderate drinking before the unit: medicine and life assurance in Britain and the US c.1860–1930

    Get PDF
    This article describes the way in which “Anstie’s Limit” – a particular definition of moderate drinking first defined in Britain in the 1860s by the physician Francis Edmund Anstie (1833–1874) – became established as a useful measure of moderate alcohol consumption. Becoming fairly well-established in mainstream Anglophone medicine by 1900, it was also communicated to the public in Britain, North America and New Zealand through newspaper reports. However, the limit also travelled to less familiar places, including life assurance offices, where a number of different strategies for separating moderate from excessive drinkers emerged from the dialogue between medicine and life assurance. Whilst these ideas of moderation seem to have disappeared into the background for much of the twentieth century, re-emerging as the “J-shaped” curve, these early developments anticipate many of the questions surrounding uses of the “unit” to quantify moderate alcohol consumption in Britain today. The article will therefore conclude by exploring some of the lessons of this story for contemporary discussions of moderation, suggesting that we should pay more attention to whether these metrics work, where they work and why
    • 

    corecore