73 research outputs found

    Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil.

    Get PDF
    The São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that orgThe São Francisco Submedium Valley is located at the Brazilian semiarid region and is an important center for irrigated fruit growing. This region is responsible for 97% of the national exportation of table grapes, including seedless grapes. Based on the fact that organic fertilization can improve soil quality, we compared the effects of conventional and organic soil management on microbial activity and mycorrhization of seedless grape crops. We measured glomerospores number, most probable number (MPN) of propagules, richness of arbuscular mycorrhizal fungi (AMF) species, AMF root colonization, EE-BRSP production, carbon microbial biomass (C-MB), microbial respiration, fluorescein diacetate hydrolytic activity (FDA) and metabolic coefficient (qCO2). The organic management led to an increase in all variables with the exception of EE-BRSP and qCO2. Mycorrhizal colonization increased from 4.7% in conventional crops to 15.9% in organic crops. Spore number ranged from 4.1 to 12.4 per 50 g-1 soil in both management systems. The most probable number of AMF propagules increased from 79 cm-3 soil in the conventional system to 110 cm-3 soil in the organic system. Microbial carbon, CO2 emission, and FDA activity were increased by 100 to 200% in the organic crop. Thirteen species of AMF were identified, the majority in the organic cultivation system. Acaulospora excavata, Entrophospora infrequens, Glomus sp.3 and Scutellospora sp. were found only in the organically managed crop. S. gregaria was found only in the conventional crop. Organically managed vineyards increased mycorrhization and general soil microbial activity

    Status Report Of The Schenberg Gravitational Wave Antenna

    Get PDF
    Here we present a status report of the Schenberg antenna. In the past three years it has gone to a radical upgrading operation, in which we have been installing a 1K pot dilution refrigerator, cabling and amplifiers for nine transducer circuits, designing a new suspension and vibration isolation system for the microstrip antennas, and developing a full set of new transducers, microstrip antennas, and oscillators. We are also studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector.3631Aguiar, O.D., (2002) Class. Quantum Grav., 19, p. 1949Aguiar, O.D., (2004) Class. Quantum Grav., 21, pp. S457Aguiar, O.D., (2005) Class. Quantum Grav., 22, pp. S209Aguiar, O.D., (2006) Class. Quantum Grav., 23, pp. S239Aguiar, O.D., (2008) Class. Quantum Grav., 25, p. 114042Costa, C.A., (2008) Class. Quantum Grav., 25, p. 184002Johnson, W.W., Merkowitz, S.M., (1993) Phys. Rev. Lett., 70, p. 2367Coccia, E., Lobo, J.A., Ortega, J.A., (1995) Phys. Rev. D, 52, p. 3735Thorne, K.S., (1978) Phys. Rev. Lett., 40, p. 667Tobar, M.E., Ivanov, E.N., Blair, D.G., (2000) Gen. Rel. Grav., 32, p. 1799De Waard, (2005) Class. Quantum Grav., 22, pp. S215Vinet, J.-Y., (2010) Research in Astron Astrophys., 10, p. 956Costa, C.A., Aguiar, O.D., Magalhães, N.S., (2004) Class. Quantum Grav., 21, pp. S827Forward, R.L., (1971) Gen. Rel. Grav., 2, p. 149Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V., Will, C.M., (1973) Phys. Rev. Lett., 30, p. 884Bianchi, M., Coccia, E., Colacino, C.N., Fafone, V., Fucito, F., (1996) Class. Quantum Grav., 13, p. 2865Andrade, L.A., (2009) Microwave and Optical Tech. Lett., 51, p. 1120Furtado, S.R., (2012), in preparationIvanov, E.N., Hartnett, J.G., Tobar, M.E., (2000) IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47, p. 1526Pimentel, G.L., (2008) J. Phys. Conf. Series, 122, p. 012028Aguiar, (2009) Int. J. Modern Phys. D, 18, p. 2317Furtado, S.R., (2009), Ph.D. Thesis at INPE, not publishedBraginsky, V.B., Vorontsov, Y.I., Thorne, K.S., (1980) Science, 209, p. 547Thorne, K.S., The Quantum Limit for Gravitational-Wave Detectors and Methods of Circumventing It (1979) Sources of Gravitational Waves, p. 49. , ed. L L Smarr, Cambridge University Press, Cambridge, US
    corecore