449 research outputs found

    Experimental consequences of the hypothesis of Regge poles

    Get PDF
    In the nonrelativistic case of the Schrödinger equation, composite particles correspond to Regge poles in scattering amplitudes (poles in the complex plane of angular momentum). It has been suggested that the same may be true in relativistic theory. In that case, the scattering amplitude in which such a particle is exchanged behaves at high energies like sα(t)[sinπα(t)]-1, where s is the energy variable and t the momentum transfer variable. When t=tR, the mass squared of the particle, then α equals an integer n related to the spin of the particle. In contrast, we may consider the case of a field theory in which the exchanged particle is treated as elementary and we examine each order of perturbation theory. When n>1, we can usually not renormalize successfully; when n≤1 and the theory is renormalizable, then the high-energy behavior is typically sn(t-tR)-1φ(t). Thus an experimental distinction is possible between the two situations. That is particularly interesting in view of the conjecture of Blankenbecler and Goldberger that the nucleon may be composite and that of Chew and Frautschi that all strongly interacting particles may be composite dynamical combinations of one another. We suggest a set of rules for finding the high-energy behavior of scattering cross sections according to the Regge pole hypothesis and apply them to π-π, π-N, and N-N scattering. We show how these cross sections differ from those expected when there are "elementary" nucleons and mesons treated in renormalized perturbation theory. For the case of N-N scattering, we analyze some preliminary experimental data and find indications that an "elementary" neutral vector meson is probably not present. Various reactions are proposed to test the "elementary" or "composite" nature of other baryons and mesons. Higher energies may be needed than are available at present

    Color superconductivity in the static Einstein Universe

    Get PDF
    We study the behavior of quark and diquark condensates in dense quark matter under the influence of a gravitational field adopting as a simple model the static D−D-dimensional Einstein Universe. Calculations are performed in the framework of the extended Nambu--Jona-Lasinio model at finite temperature and quark density on the basis of the thermodynamic potential and the gap equations. Quark and diquark condensates as functions of the chemical potential and temperature at different values of the curvature have been studied. Phase portraits of the system have been constructed

    Inhomogeneity driven by Higgs instability in gapless superconductor

    Get PDF
    The fluctuations of the Higgs and pseudo Nambu-Goldstone fields in the 2SC phase with mismatched pairing are described in the nonlinear realization framework of the gauged Nambu--Jona-Lasinio model. In the gapless 2SC phase, not only Nambu-Goldstone currents can be spontaneously generated, but the Higgs field also exhibits instablity. The Nambu-Goldstone currents generation indicates the formation of the single plane wave LOFF state and breaks rotation symmetry, while the Higgs instability favors spatial inhomogeneity and breaks translation invariance. In this paper, we focus on the Higgs instability which has not drawn much attention yet. The Higgs instability cannot be removed without a long range force, thus it persists in the gapless superfluidity and induces phase separation. In the case of g2SC state, the Higgs instability can only be partially removed by the electric Coulomb energy. However, it is not excluded that the Higgs instability might be completely removed in the charge neutral gCFL phase by the color Coulomb energy.Comment: 21 pages, 5 figure

    Gapless Color Superconductivity

    Full text link
    We present the dispersion relations for quasiparticle excitations about the color-flavor locked ground state of QCD at high baryon density. In the presence of condensates which pair light and strange quarks there need not be an energy gap in the quasiparticle spectrum. This raises the possibility of gapless color superconductivity, with a Meissner effect but no minimum excitation energy. Analysis within a toy model suggests that gapless color superconductivity may occur only as a metastable phase.Comment: 4 pages, Revtex, eps figures include

    Effective gluon interactions in the Colour Superconductive Phase of two flavor QCD

    Get PDF
    The gluon self-energies and dispersion laws in the color superconducting phase of QCD with two massless flavors are calculated using the effective theory near the Fermi surface. These quantities are calculated at zero temperature for all the eight gluons, those of the remaining SU(2) color group and those corresponding to the broken generators. The construction of the effective interaction is completed with the one loop calculation of the three- and four-point gluon interactions.Comment: LaTeX, p 17, 4 figures. Final version to be published in Phys. Lett. B. Several corrections have been done and some point clarifie

    Random matrix models for phase diagrams

    Full text link
    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from QCD to high-T_c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the `minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issue, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.Comment: 29 pages, 2 figures, uses iopart.sty. Author's postprint versio

    Statistical Mechanics of Black Holes

    Full text link
    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.Comment: 21 page

    Gluonic phases, vector condensates, and exotic hadrons in dense QCD

    Get PDF
    We study the dynamics in phases with vector condensates of gluons (gluonic phases) in dense two-flavor quark matter. These phases yield an example of dynamics in which the Higgs mechanism is provided by condensates of gauge (or gauge plus scalar) fields. Because vacuum expectation values of spatial components of vector fields break the rotational symmetry, it is naturally to have a spontaneous breakdown both of external and internal symmetries in this case. In particular, by using the Ginzburg-Landau approach, we establish the existence of a gluonic phase with both the rotational symmetry and the electromagnetic U(1) being spontaneously broken. In other words, this phase describes an anisotropic medium in which the color and electric superconductivities coexist. It is shown that this phase corresponds to a minimum of the Ginzburg-Landau potential and, unlike the two-flavor superconducting (2SC) phase, it does not suffer from the chromomagnetic instability. The dual (confinement) description of its dynamics is developed and it is shown that there are light exotic vector hadrons in the spectrum, some of which condense. Because most of the initial symmetries in this system are spontaneously broken, its dynamics is very rich.Comment: 33 pages, RevTeX; v.2: Published PRD versio

    Universal features of fluctuations

    Get PDF
    Universal scaling laws of fluctuations (the Δ\Delta-scaling laws) can be derived for equilibrium and off-equilibrium systems when combined with the finite-size scaling analysis. In any system in which the second-order critical behavior can be identified, the relation between order parameter, criticality and scaling law of fluctuations has been established and the relation between the scaling function and the critical exponents has been found.Comment: 10 pages; TORINO 2000, New Frontiers in Soft Physics and Correlations on the Threshold of the Third Milleniu
    • …
    corecore